Smart City Gnosys

Smart city article details

Title Lids-Sioel: Intrusion Detection Framework For Iot-Based Smart Environments Security Using Ensemble Learning
ID_Doc 35183
Authors Hazman C.; Guezzaz A.; Benkirane S.; Azrour M.
Year 2023
Published Cluster Computing, 26, 6
DOI http://dx.doi.org/10.1007/s10586-022-03810-0
Abstract Smart cities are being enabled all around the world by Internet of Things (IoT) applications. A smart city idea necessitates the integration of information and communication technologies and devices throughout a network in order to provide improved services to consumers. Because of their increasing amount and mobility, they are increasingly appealing to attackers. Therefore, several solutions, including as encryptions, authentication, availability, and data integrity, have been combined to protect IoT. Intrusion detection systems (IDSs) are a powerful security tool that may be improved by incorporating machine learning (ML) and deep learning (DP) techniques. This paper presents a novel intrusion detection framework for IoT-based smart environments with Ensemble Learning called IDS-SIoEL. Typically, the framework proposed an optimal anomaly detection model that uses AdaBoost, and combining different feature selection techniques Boruta, mutual information and correlation furthermore. The proposed model was evaluated on IoT-23, BoT-IoT, and Edge-IIoT datasets using the GPU. When compared to existing IDS, our approach provides good rating performance features of ACC, recall, and precision, with around 99.9% on record detection and calculation time of 33.68 s for learning and 0.02156 s for detection. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Author Keywords BoT-IoT; Edge-IIoT; Ensemble learning; Intrusion detection; IoT; IoT-23; ML; Smart environments


Similar Articles


Id Similarity Authors Title Published
12988 View0.932Hazman C.; Benkirane S.; Guezzaz A.; Azrour M.; Abdedaime M.Building An Intelligent Anomaly Detection Model With Ensemble Learning For Iot-Based Smart CitiesEnvironmental Science and Engineering (2023)
57650 View0.931Hazman C.; Guezzaz A.; Benkirane S.; Azrour M.Toward An Intrusion Detection Model For Iot-Based Smart EnvironmentsMultimedia Tools and Applications, 83, 22 (2024)
23626 View0.906Hazman C.; Guezzaz A.; Benkirane S.; Azrour M.Enhanced Ids With Deep Learning For Iot-Based Smart Cities SecurityTsinghua Science and Technology, 29, 4 (2024)
8070 View0.897Indra G.; Nirmala E.; Nirmala G.; Senthilvel P.G.An Ensemble Learning Approach For Intrusion Detection In Iot-Based Smart CitiesPeer-to-Peer Networking and Applications, 17, 6 (2024)
24125 View0.897Alhowaide A.; Alsmadi I.; Alsinglawi B.Ensemble-Based Cyber Intrusion Detection For Robust Smart City ProtectionProceedings - 2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things, DCOSS-IoT 2024 (2024)
22935 View0.894Merlin R.T.; Ravi R.Empowering Smart City Iot Network Intrusion Detection With Advanced Ensemble Learning-Based Feature SelectionInternational Journal of Electrical and Electronics Research, 12, 2 (2024)
5688 View0.891Hamdan M.; Eldhai A.M.; Abdelsalam S.; Ullah K.; Bashir A.K.; Marsono M.N.; Kon F.; Batista D.M.A Two-Tier Anomaly-Based Intrusion Detection Approach For Iot-Enabled Smart CitiesIEEE INFOCOM 2023 - Conference on Computer Communications Workshops, INFOCOM WKSHPS 2023 (2023)
33346 View0.887Berhili M.; Chaieb O.; Benabdellah M.Intrusion Detection Systems In Iot Based On Machine Learning: A State Of The ArtProcedia Computer Science, 251 (2024)
3003 View0.886Gopalakrishnan B.; Purusothaman P.A New Design Of Intrusion Detection In Iot Sector Using Optimal Feature Selection And High Ranking-Based Ensemble Learning ModelPeer-to-Peer Networking and Applications, 15, 5 (2022)
23837 View0.884Almotairi A.; Atawneh S.; Khashan O.A.; Khafajah N.M.Enhancing Intrusion Detection In Iot Networks Using Machine Learning-Based Feature Selection And Ensemble ModelsSystems Science and Control Engineering, 12, 1 (2024)