21159  | 0.896 | Yang T.; Tang X.; Liu R. | Dual Temporal Gated Multi-Graph Convolution Network For Taxi Demand Prediction | Neural Computing and Applications, 35, 18 (2023) |
38444  | 0.892 | Wu M.; Zhu C.; Chen L. | Multi-Task Spatial-Temporal Graph Attention Network For Taxi Demand Prediction | ACM International Conference Proceeding Series (2020) |
18013  | 0.884 | De Araujo A.C.; Etemad A. | Deep Neural Networks For Predicting Vehicle Travel Times | Proceedings of IEEE Sensors, 2019-October (2019) |
5524  | 0.872 | Xue X.; Zhou C.; Zhang X.; Guo J. | A Taxi Demand Prediction Model Based On Spectral Domain Graph Convolution | Proceedings of SPIE - The International Society for Optical Engineering, 12613 (2023) |
52828  | 0.867 | Bhanu M.; Priya S.; Moreira J.M.; Chandra J. | St-Agp: Spatio-Temporal Aggregator Predictor Model For Multi-Step Taxi-Demand Prediction In Cities | Applied Intelligence, 53, 2 (2023) |
4873  | 0.864 | Drosouli I.; Voulodimos A.; Mastorocostas P.; Miaoulis G.; Ghazanfarpour D. | A Spatial-Temporal Graph Convolutional Recurrent Network For Transportation Flow Estimation | Sensors, 23, 17 (2023) |
52523  | 0.861 | Shu P.; Sun Y.; Zhao Y.; Xu G. | Spatial-Temporal Taxi Demand Prediction Using Lstm-Cnn | IEEE International Conference on Automation Science and Engineering, 2020-August (2020) |
60161  | 0.859 | Wu Y.; Zhang H.; Li C.; Tao S.; Yang F. | Urban Ride-Hailing Demand Prediction With Multi-View Information Fusion Deep Learning Framework | Applied Intelligence, 53, 8 (2023) |
54463  | 0.857 | Askari B.; Le Quy T.; Ntoutsi E. | Taxi Demand Prediction Using An Lstm-Based Deep Sequence Model And Points Of Interest | Proceedings - 2020 IEEE 44th Annual Computers, Software, and Applications Conference, COMPSAC 2020 (2020) |
25549  | 0.853 | Kong X.; Wang K.; Hou M.; Xia F.; Karmakar G.; Li J. | Exploring Human Mobility For Multi-Pattern Passenger Prediction: A Graph Learning Framework | IEEE Transactions on Intelligent Transportation Systems, 23, 9 (2022) |