Smart City Gnosys

Smart city article details

Title A Novel Hybrid Ensemble Learning For Anomaly Detection In Industrial Sensor Networks And Scada Systems For Smart City Infrastructures
ID_Doc 3395
Authors Kayode Saheed Y.; Harazeem Abdulganiyu O.; Ait Tchakoucht T.
Year 2023
Published Journal of King Saud University - Computer and Information Sciences, 35, 5
DOI http://dx.doi.org/10.1016/j.jksuci.2023.03.010
Abstract Critical Infrastructures (CIs) use Supervisory Control and Data Acquisition (SCADA) systems for monitoring and remote control. Sensor networks are being integrated into all areas of the infrastructures of smart cities. The sensor network data stream contains information that can be utilized to model and control the activity of these infrastructures. However, SCADA systems are constantly exposed to a variety of diverse intrusions, making detection with traditional intrusion detection systems (IDS) extremely difficult. Due to their unique specifications, conventional security solutions, like antivirus and firewall software, are unsuitable for properly securing SCADA systems. In addition, anomaly detection in industrial sensor networks (ISNs) should occur in real time. Therefore, effectively identifying cyberattacks in major SCADA systems is unquestionably essential for enhancing their resilience, ensuring safe operations, and avoiding expensive maintenance. We developed a novel hybrid ensemble model approach to address these issues. This paper's primary objective is to detect hostile intrusions that have already circumvented firewalls and typical IDS. In this paper, we propose a hybrid Ensemble Learning Model (ELM) for intrusion detection in SCADA systems with ISNs utilizing a tangible data gathered from a gas pipeline system given by Mississippi State University (MSU), the water system, and the high-dimensional University of New South Wales-NB 2015 (UNSW-NB15) data that reflects a typical attack in the Internet of Things (IoT) environment. The unity normalization method was adopted for data preprocessing, and the Principal Component Analysis (PCA) was utilized for feature extraction of the high-dimensional datasets. Grey Wolf Optimizer (GWO) was used for optimizing the bagging, stacking, Adaboost, and an ensemble of classifiers Naive Bayes and Support Vector Machine with a majority voting technique. Then, we utilized the proposed approach founded on the bijective soft-set approach for efficient ELM selection. The experiment was conducted in two phases: Initially, without PCA + GWO for feature extraction and selection on the ELM, and subsequently, with PCA + GWO for feature extraction and selection on the ELM. PCA + GWO on the ensemble of classifiers NB + SVM provided an accuracy of 99%, precision of 100%, recall of 100%, and detection rate of 99.90%, outpacing the ensemble of classifiers without PCA feature extraction and GWO optimization approaches. © 2023 The Author(s)
Author Keywords Adaboost; Bagging; Critical infrastructure; Ensemble learning; Grey wolf optimizer; Industrial control networks; Internet of things; Intrusion detection system; SCADA; Smart City; Smart Grid; Stacking


Similar Articles


Id Similarity Authors Title Published
8070 View0.897Indra G.; Nirmala E.; Nirmala G.; Senthilvel P.G.An Ensemble Learning Approach For Intrusion Detection In Iot-Based Smart CitiesPeer-to-Peer Networking and Applications, 17, 6 (2024)
9639 View0.897Bukhari O.; Agarwal P.; Koundal D.; Zafar S.Anomaly Detection Using Ensemble Techniques For Boosting The Security Of Intrusion Detection SystemProcedia Computer Science, 218 (2022)
24125 View0.888Alhowaide A.; Alsmadi I.; Alsinglawi B.Ensemble-Based Cyber Intrusion Detection For Robust Smart City ProtectionProceedings - 2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things, DCOSS-IoT 2024 (2024)
2187 View0.888Gill K.S.; Dhillon A.A Hybrid Machine Learning Framework For Intrusion Detection System In Smart CitiesEvolving Systems, 15, 6 (2024)
23837 View0.887Almotairi A.; Atawneh S.; Khashan O.A.; Khafajah N.M.Enhancing Intrusion Detection In Iot Networks Using Machine Learning-Based Feature Selection And Ensemble ModelsSystems Science and Control Engineering, 12, 1 (2024)
12988 View0.884Hazman C.; Benkirane S.; Guezzaz A.; Azrour M.; Abdedaime M.Building An Intelligent Anomaly Detection Model With Ensemble Learning For Iot-Based Smart CitiesEnvironmental Science and Engineering (2023)
5689 View0.884Srivastav D.; Srivastava P.A Two-Tier Hybrid Ensemble Learning Pipeline For Intrusion Detection Systems In Iot NetworksJournal of Ambient Intelligence and Humanized Computing, 14, 4 (2023)
57650 View0.884Hazman C.; Guezzaz A.; Benkirane S.; Azrour M.Toward An Intrusion Detection Model For Iot-Based Smart EnvironmentsMultimedia Tools and Applications, 83, 22 (2024)
22935 View0.883Merlin R.T.; Ravi R.Empowering Smart City Iot Network Intrusion Detection With Advanced Ensemble Learning-Based Feature SelectionInternational Journal of Electrical and Electronics Research, 12, 2 (2024)
7367 View0.883Albulayhi K.; Sheldon F.T.An Adaptive Deep-Ensemble Anomaly-Based Intrusion Detection System For The Internet Of Things2021 IEEE World AI IoT Congress, AIIoT 2021 (2021)