Smart City Gnosys

Smart city article details

Title Intelligent And Sustainable Waste Classification Model Based On Multi-Objective Beluga Whale Optimization And Deep Learning
ID_Doc 32284
Authors Sayed G.I.; Abd Elfattah M.; Darwish A.; Hassanien A.E.
Year 2024
Published Environmental Science and Pollution Research, 31, 21
DOI http://dx.doi.org/10.1007/s11356-024-33233-w
Abstract Resource recycling is considered necessary for sustainable development, especially in smart cities where increased urbanization and the variety of waste generated require the development of automated waste management models. The development of smart technology offers a possible alternative to traditional waste management techniques that are proving insufficient to reduce the harmful effects of trash on the environment. This paper proposes an intelligent waste classification model to enhance the classification of waste materials, focusing on the critical aspect of waste classification. The proposed model leverages the InceptionV3 deep learning architecture, augmented by multi-objective beluga whale optimization (MBWO) for hyperparameter optimization. In MBWO, sensitivity and specificity evaluation criteria are integrated linearly as the objective function to find the optimal values of the dropout period, learning rate, and batch size. A benchmark dataset, namely TrashNet is adopted to verify the proposed model’s performance. By strategically integrating MBWO, the model achieves a considerable increase in accuracy and efficiency in identifying waste materials, contributing to more effective waste management strategies while encouraging sustainable waste management practices. The proposed intelligent waste classification model outperformed the state-of-the-art models with an accuracy of 97.75%, specificity of 99.55%, F1-score of 97.58%, and sensitivity of 98.88%. © The Author(s) 2024.
Author Keywords Beluga whale optimization; Deep learning; Hyperparameter tuning; Sustainable waste; TrashNet; Waste classification


Similar Articles


Id Similarity Authors Title Published
29733 View0.923Zhang H.; Cao H.; Zhou Y.; Gu C.; Li D.Hybrid Deep Learning Model For Accurate Classification Of Solid Waste In The SocietyUrban Climate, 49 (2023)
4798 View0.92Lilhore U.K.; Simaiya S.; Dalal S.; Damaševičius R.A Smart Waste Classification Model Using Hybrid Cnn-Lstm With Transfer Learning For Sustainable EnvironmentMultimedia Tools and Applications, 83, 10 (2024)
58394 View0.919Islam M.; Hasan S.M.M.; Rakib H.; Uddin P.; Mamun A.Towards Sustainable Solutions: Effective Waste Classification Framework Via Enhanced Deep Convolutional Neural NetworksPLOS ONE, 20, 6 June (2025)
1329 View0.91Gomathi K.; Narayanan L.K.A Deep Learning Aided Smart Waste Classification System For Smart CitiesProceedings - 2024 IEEE 16th International Conference on Communication Systems and Network Technologies, CICN 2024 (2024)
7826 View0.903Saghana K.; Saranya P.; Mahesh Reddy A.; Keerthy Rai V.; Ramasubramanian B.; Sudhakaran P.An Efficient Deep Learning Based Waste Management System For Sustainable Environment3rd International Conference on Intelligent Data Communication Technologies and Internet of Things, IDCIoT 2025 (2025)
23601 View0.903Kabilan B.; Sairam R.; Praveen M.Enhanced Cnn Architecture For Accurate Waste Classification In Smart CitiesProceedings of 5th International Conference on IoT Based Control Networks and Intelligent Systems, ICICNIS 2024 (2024)
24091 View0.902Srizon A.Y.; Sarker A.; Mamun M.A.; Faruk M.F.; Hasan S.M.M.Enhancing Waste Categorization Using Ensemble Of Transfer Learning And Light-Weight Convolutional Neural Network2023 International Conference on Next-Generation Computing, IoT and Machine Learning, NCIM 2023 (2023)
47322 View0.898Singh P.; Hasija T.; Ramkumar K.R.Scalable Deep Learning Techniques For Automated Waste Segregation In Smart City Environments2024 IEEE 8th International Conference on Information and Communication Technology, CICT 2024 (2024)
22318 View0.897Bonala K.; Saggurthi P.; Kambala P.K.; Voruganti S.; Utukuru S.; Sugamya K.Efficient Handling Of Waste Using Deep Learning And Iot2nd International Conference on Sustainable Computing and Smart Systems, ICSCSS 2024 - Proceedings (2024)
52263 View0.897Ramya R.; Vinitha Shree S.; Yogeshwari S.; Venkatesan S.Solid Waste Identification And Classification Method Based On Feature Selection And Hybrid Resnet Cnn Models In Smart EnvironmentLecture Notes in Networks and Systems, 730 LNNS (2023)