Smart City Gnosys

Smart city article details

Title Integrating Learning-Based Solutions In Intelligent Transportation Systems: A Conceptual Framework And Case Studies Validation
ID_Doc 32025
Authors Fatorachian H.; Kazemi H.
Year 2024
Published Cogent Engineering, 11, 1
DOI http://dx.doi.org/10.1080/23311916.2024.2427235
Abstract Urbanization has led to significant traffic congestion, presenting challenges for traditional traffic management systems that rely on static and rule-based approaches. These systems struggle to adapt to real-time changes in traffic patterns, resulting in inefficiencies and delays. Intelligent Transportation Systems (ITS), leveraging advanced technologies such as sensors, communication networks, and data analytics, offer promising solutions. This study aims to develop and validate a conceptual framework integrating deep learning, reinforcement learning, and transfer learning into ITS for dynamic and adaptive traffic management. An explorative literature review identifies key constructs, including real-time data collection, data preprocessing, adaptive signal control, and predictive analytics. The framework is validated through case studies from Singapore, Los Angeles, and Rio de Janeiro, demonstrating practical implementation and impact. The findings highlight the potential of learning-based ITS solutions to enhance traffic flow, reduce congestion, and improve urban transportation networks, contributing to the broader vision of smart cities. © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Author Keywords Cities & Infrastructure; Intelligent transportation systems (ITS;), deep learning; reinforcement learning; Systems & Control Engineering; Technology; traffic management; transfer learning; Transport & Vehicle Engineering


Similar Articles


Id Similarity Authors Title Published
23735 View0.91Sattarzadeh A.R.; Pathirana P.N.Enhancing Adaptive Traffic Control Systems With Deep Reinforcement Learning And Graphical ModelsProceedings - 2024 IEEE International Conference on Future Machine Learning and Data Science, FMLDS 2024 (2024)
50634 View0.904Ahmadi K.; Allan V.H.Smart City: Application Of Multi-Agent Reinforcement Learning Systems In Adaptive Traffic Management2021 IEEE International Smart Cities Conference, ISC2 2021 (2021)
21429 View0.904Skoropad V.N.; Deđanski S.; Pantović V.; Injac Z.; Vujičić S.; Jovanović-Milenković M.; Jevtić B.; Lukić-Vujadinović V.; Vidojević D.; Bodolo I.Dynamic Traffic Flow Optimization Using Reinforcement Learning And Predictive Analytics: A Sustainable Approach To Improving Urban Mobility In The City Of BelgradeSustainability (Switzerland), 17, 8 (2025)
7046 View0.899Rathore S.P.S.; Farhaoui Y.; Aniebonam E.E.; Nagpal T.; Thanuja M.; Kaushik P.Ai-Driven Traffic Congestion Management: A Predictive Analytics Approach For Smart Cities2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2025 (2025)
11516 View0.896Giannini F.; Franze G.; Pupo F.; Fortino G.Autonomous Vehicles In Smart Cities: A Deep Reinforcement Learning SolutionProceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2022 (2022)
1927 View0.896Attoui S.-E.; Meddeb M.A Generic Framework For Forecasting Short-Term Traffic Conditions On Urban Highways2021 IEEE 8th International Conference on Data Science and Advanced Analytics, DSAA 2021 (2021)
32238 View0.895Jain V.; Mitra A.Integrative Hybrid Information Systems For Enhanced Traffic Maintenance And Control In Bangalore: A Synchronized ApproachHybrid Information Systems: Non-Linear Optimization Strategies with Artificial Intelligence (2024)
18032 View0.895Singh D.Deep Reinforcement Learning (Drl) For Real-Time Traffic Management In Smart Cities2023 International Conference on Communication, Security and Artificial Intelligence, ICCSAI 2023 (2023)
40923 View0.895Zhang Z.; Zhou B.; Zhang B.; Cheng P.; Lee D.-H.; Hu S.Optimizing Traffic Signal Control In Mixed Traffic Scenarios: A Predictive Traffic Information-Based Deep Reinforcement Learning Approach2024 Forum for Innovative Sustainable Transportation Systems, FISTS 2024 (2024)
6356 View0.894Kumar R.; Sharma N.V.K.; Chaurasiya V.K.Adaptive Traffic Light Control Using Deep Reinforcement Learning TechniqueMultimedia Tools and Applications, 83, 5 (2024)