Smart City Gnosys

Smart city article details

Title Improving The Efficiency Of Multistep Short-Term Electricity Load Forecasting Via R-Cnn With Ml-Lstm
ID_Doc 30937
Authors Alsharekh M.F.; Habib S.; Dewi D.A.; Albattah W.; Islam M.; Albahli S.
Year 2022
Published Sensors, 22, 18
DOI http://dx.doi.org/10.3390/s22186913
Abstract Multistep power consumption forecasting is smart grid electricity management’s most decisive problem. Moreover, it is vital to develop operational strategies for electricity management systems in smart cities for commercial and residential users. However, an efficient electricity load forecasting model is required for accurate electric power management in an intelligent grid, leading to customer financial benefits. In this article, we develop an innovative framework for short-term electricity load forecasting, which includes two significant phases: data cleaning and a Residual Convolutional Neural Network (R-CNN) with multilayered Long Short-Term Memory (ML-LSTM) architecture. Data preprocessing strategies are applied in the first phase over raw data. A deep R-CNN architecture is developed in the second phase to extract essential features from the refined electricity consumption data. The output of R-CNN layers is fed into the ML-LSTM network to learn the sequence information, and finally, fully connected layers are used for the forecasting. The proposed model is evaluated over residential IHEPC and commercial PJM datasets and extensively decreases the error rates compared to baseline models. © 2022 by the authors.
Author Keywords CNN-LSTM; electricity consumption; electricity load forecasting; ML-LSTM; residual CNN


Similar Articles


Id Similarity Authors Title Published
38451 View0.907Safari A.; Kharrati H.; Rahimi A.Multi-Term Electrical Load Forecasting Of Smart Cities Using A New Hybrid Highly Accurate Neural Network-Based Predictive ModelSmart Grids and Sustainable Energy, 9, 1 (2024)
7417 View0.895Sunder R.; R S.; Paul V.; Punia S.K.; Konduri B.; Nabilal K.V.; Lilhore U.K.; Lohani T.K.; Ghith E.; Tlija M.An Advanced Hybrid Deep Learning Model For Accurate Energy Load Prediction In Smart BuildingEnergy Exploration and Exploitation, 42, 6 (2024)
3739 View0.894Noaman S.A.; Ahmed A.M.S.; Salman A.D.A Prediction Model Of Power Consumption In Smart City Using Hybrid Deep Learning AlgorithmInternational Journal on Informatics Visualization, 7, 4 (2023)
38700 View0.891Amalou I.; Mouhni N.; Abdali A.Multivariate Time Series Prediction By Rnn Architectures For Energy Consumption ForecastingEnergy Reports, 8 (2022)
12172 View0.888So D.; Oh J.; Jeon I.; Moon J.; Lee M.; Rho S.Bigta-Net: A Hybrid Deep Learning-Based Electrical Energy Forecasting Model For Building Energy Management SystemsSystems, 11, 9 (2023)
15041 View0.885Satan A.; Khamzina A.; Toktarbayev D.; Sotsial Z.; Bapiyev I.; Zhakiyev N.Comparative Lstm And Svm Machine Learning Approaches For Energy Consumption Prediction: Case Study In AkmolaSIST 2022 - 2022 International Conference on Smart Information Systems and Technologies, Proceedings (2022)
23183 View0.877Binbusayyis A.; Sha M.Energy Consumption Prediction Using Modified Deep Cnn-Bi Lstm With Attention MechanismHeliyon, 11, 1 (2025)
6990 View0.875Saeed A.; Asif R.M.; Rehman A.U.; Hassan S.R.; Bharany S.; Hamam H.Ai-Based Energy Management And Prediction System For Smart CitiesJordan Journal of Electrical Engineering, 11, 2 (2025)
6687 View0.875Rao B.S.; Aparna M.; Raju M.S.N.Advancing Smart City Energy Management: Very Short-Term Photovoltaic Power Generation Forecasting Using Multi-Scale Long Short-Term Memory Deep LearningBiomass and Solar-Powered Sustainable Digital Cities (2024)
8459 View0.871Alghamdi H.; Hafeez G.; Ali S.; Ullah S.; Khan M.I.; Murawwat S.; Hua L.-G.An Integrated Model Of Deep Learning And Heuristic Algorithm For Load Forecasting In Smart GridMathematics, 11, 21 (2023)