Smart City Gnosys

Smart city article details

Title Improved Radial Movement Optimization With Fuzzy Neural Network Enabled Anomaly Detection For Iot Assisted Smart Cities
ID_Doc 30745
Authors Alrayes F.S.; Mtouaa W.; Aljameel S.S.; Maashi M.; Rizwanullah M.; Salama A.S.
Year 2023
Published IEEE Access, 11
DOI http://dx.doi.org/10.1109/ACCESS.2023.3342698
Abstract Recently, an extensive implementation of the recent Internet of Things (IoT) model has resulted in the development of smart cities. The network traffic of smart cities using loT systems has developed rapidly and established novel cybersecurity problems later these loT devices are linked to sensors that are directly linked to huge cloud servers. Unfortunately, IoT systems and networks can be identified as extremely exposed to security attacks that aim at service accessibility and data integrity. Additionally, the heterogeneity of data gathered in distinct IoT devices, composed of the disturbances acquired in the IoT systems, renders the recognition of anomalous performance and threatened nodes very difficult related to typical Information Technology (IT) networks. Accordingly, there is a critical requirement for reliable and effectual anomaly detection (AD) for identifying malicious data to promise that it could not be utilized in IoT lead to decision support systems (DSS). This manuscript offers an Improved Radial Movement Optimization with Fuzzy Neural Network Enabled Anomaly Detection (IRMOFNN-AD) technique for IoT Assisted Smart Cities. The main purpose of the IRMOFNN-AD algorithm lies in the accurate and automated detection of the anomalies that exist in the IoT environment. For the feature selection process, the IRMOFNN-AD technique uses the IRMO system to elect an optimum set of features. Additionally, the IRMOFNN-AD algorithm applies the FNN model for the detection and classification of anomalies. Besides, the sine cosine algorithm (SCA) has been employed for the parameter tuning of the FNN algorithm. The simulation value of the IRMOFNN-AD system has been tested on benchmark IDS datasets. The extensive results illustrate the better detection outcomes of the IRMOFNN-AD system interms of different measures.
Author Keywords Anomaly detection; feature selection; fuzzy neural network; Internet of Things; security; smart cities


Similar Articles


Id Similarity Authors Title Published
6153 View0.879Alrashdi I.; Alqazzaz A.; Aloufi E.; Alharthi R.; Zohdy M.; Ming H.Ad-Iot: Anomaly Detection Of Iot Cyberattacks In Smart City Using Machine Learning2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019 (2019)
33620 View0.876Villegas-Ch W.; Govea J.; Jaramillo-Alcazar A.Iot Anomaly Detection To Strengthen Cybersecurity In The Critical Infrastructure Of Smart CitiesApplied Sciences (Switzerland), 13, 19 (2023)
2510 View0.872Florrence J.M.; Antoinette A.; Buvaneswari S.; Wanare A.L.; Vashistha A.; Mulpuri M.; Rambabu R.A Mathematical Model For Enhancing Cybersecurity In Iot Networks Using Lstm-Based Anomaly Detection And OptimizationCommunications on Applied Nonlinear Analysis, 32, 2 (2025)
9639 View0.869Bukhari O.; Agarwal P.; Koundal D.; Zafar S.Anomaly Detection Using Ensemble Techniques For Boosting The Security Of Intrusion Detection SystemProcedia Computer Science, 218 (2022)
17981 View0.868Himdi T.; Ishaque M.Deep Learning-Enhanced Anomaly Detection For Iot Security In Smart CitiesARPN Journal of Engineering and Applied Sciences, 19, 6 (2024)
30690 View0.868Khayyat M.M.Improved Bacterial Foraging Optimization With Deep Learning Based Anomaly Detection In Smart CitiesAlexandria Engineering Journal, 75 (2023)
36913 View0.865Girubagari N.; Ravi T.N.Methods Of Anomaly Detection For The Prevention And Detection Of Cyber AttacksInternational Journal of Intelligent Engineering Informatics, 11, 4 (2024)
7367 View0.865Albulayhi K.; Sheldon F.T.An Adaptive Deep-Ensemble Anomaly-Based Intrusion Detection System For The Internet Of Things2021 IEEE World AI IoT Congress, AIIoT 2021 (2021)
9646 View0.864Maniriho P.; Niyigaba E.; Bizimana Z.; Twiringiyimana V.; Mahoro L.J.; Ahmad T.Anomaly-Based Intrusion Detection Approach For Iot Networks Using Machine LearningCENIM 2020 - Proceeding: International Conference on Computer Engineering, Network, and Intelligent Multimedia 2020 (2020)
7014 View0.863Reis M.J.C.S.Ai-Driven Anomaly Detection For Securing Iot Devices In 5G-Enabled Smart CitiesElectronics (Switzerland), 14, 12 (2025)