Smart City Gnosys

Smart city article details

Title Hybrid Machine Learning And Modified Teaching Learning-Based English Optimization Algorithm For Smart City Communication
ID_Doc 29773
Authors Liu X.; Zhang X.; Baziar A.
Year 2023
Published Sustainability (Switzerland), 15, 15
DOI http://dx.doi.org/10.3390/su151511535
Abstract This paper introduces a hybrid algorithm that combines machine learning and modified teaching learning-based optimization (TLBO) for enhancing smart city communication and energy management. The primary objective is to optimize the modified systems, which face challenges due to their high population density. The proposed algorithm integrates the strengths of machine learning techniques, more specifically, the long short-term memory (LSTM) technique, with teaching learning-based optimization algorithms. To achieve optimization, the algorithm learns from historical data on energy consumption and communication patterns specific to the modeled system. By leveraging these insights, it can predict future energy consumption and communication patterns accurately. Additionally, the algorithm incorporates a modified teaching learning-based optimization approach inspired by the teaching and learning process in classrooms. It adjusts the system parameters based on feedback received from the system, thereby optimizing both energy consumption and communication systems. The effectiveness of the proposed algorithm is evaluated through a case study conducted on the test system, where historical data on energy consumption and communication patterns are analyzed. The results demonstrate that the algorithm efficiently optimizes the communication and energy management systems, leading to substantial energy savings and improved communication efficiency within the test system. In conclusion, this study presents a hybrid machine learning and modified teaching learning-based optimization algorithm that effectively addresses the communication and energy management challenges in the test system. Moreover, this algorithm holds the potential for application in various smart city domains beyond the test system. The findings of this research contribute to the advancement of smart city technologies and offer valuable insights into reducing energy consumption in densely populated urban areas. © 2023 by the authors.
Author Keywords energy management; hybrid machine learning; smart city communication; teaching learning-based optimization algorithm


Similar Articles


Id Similarity Authors Title Published
50394 View0.882Papitha Christobel T.; Meenakshi S.; Rajeswari P.; Mohanambal K.; Giri R.K.Smart City Optimization Through Machine Learning For Enhancing Urban Efficiency And SustainabilityNanotechnology Perceptions, 20, S5 (2024)
39232 View0.877Himeur Y.; Elnour M.; Fadli F.; Meskin N.; Petri I.; Rezgui Y.; Bensaali F.; Amira A.Next-Generation Energy Systems For Sustainable Smart Cities: Roles Of Transfer LearningSustainable Cities and Society, 85 (2022)
42825 View0.87Yoon G.; Park S.; Park S.; Lee T.; Kim S.; Jang H.; Lee S.; Park S.Prediction Of Machine Learning Base For Efficient Use Of Energy Infrastructure In Smart CityProceedings - 2019 International Conference on Computing, Electronics and Communications Engineering, iCCECE 2019 (2019)
32662 View0.87Chen G.; Zhang J.W.Intelligent Transportation Systems: Machine Learning Approaches For Urban Mobility In Smart CitiesSustainable Cities and Society, 107 (2024)
22572 View0.866Peteleaza D.; Matei A.; Sorostinean R.; Gellert A.; Fiore U.; Zamfirescu B.-C.; Palmieri F.Electricity Consumption Forecasting For Sustainable Smart Cities Using Machine Learning MethodsInternet of Things (Netherlands), 27 (2024)
36066 View0.864Ajagunsegun T.; Li J.; Bamisile O.; Ohakwe C.Machine Learning-Based System For Managing Energy Efficiency Of Public Buildings: An Approach Towards Smart Cities2022 4th Asia Energy and Electrical Engineering Symposium, AEEES 2022 (2022)
4027 View0.861Carrera B.; Kim K.A Regression Framework For Energy Consumption In Smart Cities With Encoder-Decoder Recurrent Neural NetworksEnergies, 16, 22 (2023)
22431 View0.861Rajaan R.; Baishya B.K.; Rao T.V.; Pattanaik B.; Tripathi M.A.; Anitha R.Efficient Usage Of Energy Infrastructure In Smart City Using Machine LearningEAI Endorsed Transactions on Internet of Things, 10 (2024)
36002 View0.861Sharma H.; Haque A.; Blaabjerg F.Machine Learning In Wireless Sensor Networks For Smart Cities: A SurveyElectronics (Switzerland), 10, 9 (2021)
35924 View0.861Deepica S.; Kalavathi S.; Angelin Blessy J.; Vianny D.M.M.Machine Learning Based Approach For Energy Management In The Smart City RevolutionHybrid Intelligent Approaches for Smart Energy: Practical Applications (2022)