23647  | 0.864 | Bhonde T.; Temare H.; Dadwhal Y.S. | Enhanced Object Detection Using Yolov8: Identifying Vehicles And Pedestrians In Urban Environments | 2024 IEEE Pune Section International Conference, PuneCon 2024 (2024) |
45511  | 0.862 | Zhao R.; Hao J.; Huo H. | Research On Multi-Modal Pedestrian Detection And Tracking Algorithm Based On Deep Learning | Future Internet, 16, 6 (2024) |
43782  | 0.861 | Tahir N.U.A.; Long Z.; Zhang Z.; Asim M.; ELAffendi M. | Pvswin-Yolov8S: Uav-Based Pedestrian And Vehicle Detection For Traffic Management In Smart Cities Using Improved Yolov8 | Drones, 8, 3 (2024) |
39607  | 0.853 | Du L. | Object Detectors In Autonomous Vehicles: Analysis Of Deep Learning Techniques | International Journal of Advanced Computer Science and Applications, 14, 10 (2023) |
41727  | 0.852 | Bisio I.; Haleem H.; Garibotto C.; Lavagetto F.; Sciarrone A. | Performance Evaluation And Analysis Of Drone-Based Vehicle Detection Techniques From Deep Learning Perspective | IEEE Internet of Things Journal, 9, 13 (2022) |
21083  | 0.851 | Sun Y.; Cao B.; Zhu P.; Hu Q. | Drone-Based Rgb-Infrared Cross-Modality Vehicle Detection Via Uncertainty-Aware Learning | IEEE Transactions on Circuits and Systems for Video Technology, 32, 10 (2022) |
43780  | 0.851 | Tahir N.U.A.; Zhang Z.; Asim M.; Iftikhar S.; A. Abd El-Latif A. | Pvdm-Yolov8L: A Solution For Reliable Pedestrian And Vehicle Detection In Autonomous Vehicles Under Adverse Weather Conditions | Multimedia Tools and Applications, 84, 23 (2025) |