Smart City Gnosys

Smart city article details

Title Fast And Precise: Parallel Processing Of Vehicle Traffic Videos Using Big Data Analytics
ID_Doc 26125
Authors Perafan-Villota J.C.; Mondragon O.H.; Mayor-Toro W.M.
Year 2022
Published IEEE Transactions on Intelligent Transportation Systems, 23, 8
DOI http://dx.doi.org/10.1109/TITS.2021.3109625
Abstract Cities worldwide use camera systems that collect and store large amounts of images, which are used to study vehicle traffic conditions, facilitating traffic management authorities' decision-making. Typically, the inspection of those images is performed manually, which prevents extracting relevant information in a timely manner. There is a lack of platforms to collect and analyze key data from traffic videos in an automatic and speedy way. Computer vision can be used in combination with parallel distributed systems to provide city authorities tools for automatic and fast processing of stored videos to determine the most significant driving patterns that cause traffic accidents while allowing to measure the traffic density. We use a Convolutional Neural Network (CNN) to detect vehicles captured by traffic cameras, which are then tracked using an algorithm that we designed, based on multi-tracking Kalman filters. To speed up analysis, we propose a low-cost distributed infrastructure based on Hadoop and Spark frameworks for data processing: videos are equally divided and distributed to multicore CPU nodes for analysis. However, splitting up videos could generate inaccuracies in vehicle counting, which were avoided through the use of an algorithm that we present in this work. We found that it is possible to rapidly determine traffic densities, identify dangerous driving maneuvers, and detect accidents with high accuracy by using low-cost commodity cluster computing. There is a lack of computing platforms to collect and analyze key data from traffic videos in an automatic and speedy way. Computer vision can be used in combination with parallel distributed systems to provide city authorities tools for automatic and fast processing of stored videos to determine the most significant driving patterns that cause traffic accidents while allowing to measure the traffic density. This study explores the integration of different tools such as parallel data processing, deep learning, and probabilistic models. We present an approach based on Convolutional Neural Network (CNN) and Kalman filters to detect and track vehicles captured by traffic cameras. To speed up analysis, we propose and evaluate a low-cost distributed infrastructure based on Hadoop and Spark frameworks and comprised of multicore CPU nodes for data processing. Finally, we present an algorithm to allow vehicle counting while avoiding inaccuracies generated when videos are split to be distributed for analysis. We found that it is possible to rapidly determine traffic densities, identify dangerous driving maneuvers, and detect accidents with high accuracy by using low-cost commodity cluster computing. © 2000-2011 IEEE.
Author Keywords Accident detection; big data; convolutional neural network; fast processing; Hadoop; Intersection over Union (IoU); Kalman filter; multi-tracking; smart cities; Spark; You Only Look Once (YOLO)


Similar Articles


Id Similarity Authors Title Published
31037 View0.897Aqib M.; Mehmood R.; Alzahrani A.; Katib I.In-Memory Deep Learning Computations On Gpus For Prediction Of Road Traffic Incidents Using Big Data FusionEAI/Springer Innovations in Communication and Computing (2020)
27834 View0.896Devadhas Sujakumari P.; Dassan P.Generative Adversarial Networks (Gan) And Hdfs-Based Realtime Traffic Forecasting System Using Cctv SurveillanceSymmetry, 15, 4 (2023)
12041 View0.895Adewopo V.; Elsayed N.; Elsayed Z.; Ozer M.; Zekios C.L.; Abdelgawad A.; Bayoumi M.Big Data And Deep Learning In Smart Cities: A Comprehensive Dataset For Ai-Driven Traffic Accident Detection And Computer Vision Systems2024 IEEE 3rd International Conference on Computing and Machine Intelligence, ICMI 2024 - Proceedings (2024)
12042 View0.895Adewopo V.; Elsayed N.; Elsayed Z.; Ozer M.; Zekios C.L.; Abdelgawad A.; Bayoumi M.Big Data And Deep Learning In Smart Cities: A Comprehensive Dataset For Ai-Driven Traffic Accident Detection And Computer Vision SystemsConference Proceedings - IEEE SOUTHEASTCON (2024)
31786 View0.894Jinadu O.; Oludare V.; Rajeev S.; Kezebou L.; Panetta K.; Agaian S.Instant-Level Vehicle Speed And Traffic Density Estimation Using Deep Neural NetworkProceedings of SPIE - The International Society for Optical Engineering, 12526 (2023)
19290 View0.892Govinda Rao S.; Rambabu R.; Anil Kumar B.S.; Srinivas V.; Varaprasada Rao P.Detection Of Traffic Congestion From Surveillance Videos Using Machine Learning Techniques6th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2022 - Proceedings (2022)
58556 View0.892Mane D.; Bidwe R.; Zope B.; Ranjan N.Traffic Density Classification For Multiclass Vehicles Using Customized Convolutional Neural Network For Smart CityLecture Notes in Networks and Systems, 461 (2022)
11265 View0.89Sudhakaran P.; Koushik C.R.; George J.G.Automated Traffic Control For Sustainable Urban Mobility3rd International Conference on Automation, Computing and Renewable Systems, ICACRS 2024 - Proceedings (2024)
51587 View0.885Lingani G.M.; Rawat D.B.; Garuba M.Smart Traffic Management System Using Deep Learning For Smart City Applications2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019 (2019)
6033 View0.884Islam J.; Islam M.T.; Golam Rashed M.; Das D.Accurate Vehicles Detection And Speed Estimation Using Homography Based Background Subtraction And Deep Learning Approaches2023 26th International Conference on Computer and Information Technology, ICCIT 2023 (2023)