Smart City Gnosys

Smart city article details

Title Evaluating The Use Of Edge Devices For Detection And Tracking Of Vehicles In Smart City Environment
ID_Doc 24693
Authors Kocejko T.; Neumann T.; Mazur-Milecka M.; Kowalczyk N.; Ruminski J.; Jo K.-H.; Kaszynski M.; Ludwisiak T.
Year 2024
Published 2024 International Workshop on Intelligent Systems, IWIS 2024
DOI http://dx.doi.org/10.1109/IWIS62722.2024.10706028
Abstract —This paper introduces a Smart City solution designed to run on edge devices, leveraging NVIDIA’s DeepStream SDK for efficient urban surveillance. We evaluate five object-tracking approaches, using YOLO as the baseline detector and integrating three Nvidia DeepStream trackers: IOU, NvSORT, and NvDCF. Additionally, we propose a custom tracker based on Optical Flow and Kalman filtering. The presented approach combines advanced machine learning and deep learning techniques to enhance object tracking in intelligent traffic management systems, contributing to the evolving landscape of urbanization. Experimental results highlight the challenges and potential improvements in tracking accuracy, particularly in addressing object misclassification. In the conducted study, the proposed method achieved average precision = 0.95. ©2024 IEEE.
Author Keywords fast object tracking; Kalman filtering; optical flow; smart city; vehicle identification; vehicle tracking


Similar Articles


Id Similarity Authors Title Published
14210 View0.887Wei P.; Shi H.; Yang J.; Qian J.; Ji Y.; Jiang X.City-Scale Vehicle Tracking And Traffic Flow Estimation Using Low Frame-Rate Traffic CamerasUbiComp/ISWC 2019- - Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (2019)
61474 View0.887Dong Z.; Lu Y.; Tong G.; Shu Y.; Wang S.; Shi W.Watchdog: Real-Time Vehicle Tracking On Geo-Distributed Edge NodesACM Transactions on Internet of Things, 4, 1 (2023)
21807 View0.886Skadins A.; Ivanovs M.; Rava R.; Nesenbergs K.Edge Pre-Processing Of Traffic Surveillance Video For Bandwidth And Privacy Optimization In Smart CitiesProceedings of the Biennial Baltic Electronics Conference, BEC, 2020-October (2020)
23882 View0.88Ahmed M.; El-Sheimy N.; Leung H.Enhancing Object Tracking In Smart City Intelligent Transportation Systems: A Track-By-Detection Approach Utilizing Satellite Video Monitoring2024 IEEE International Conference on Smart Mobility, SM 2024 (2024)
16287 View0.874Yang S.; Bailey E.; Yang Z.; Ostrometzky J.; Zussman G.; Seskar I.; Kostic Z.Cosmos Smart Intersection: Edge Compute And Communications For Bird'S Eye Object Tracking2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020 (2020)
21836 View0.871Barthélemy, J; Verstaevel, N; Forehead, H; Perez, PEdge-Computing Video Analytics For Real-Time Traffic Monitoring In A Smart CitySENSORS, 19, 9 (2019)
17768 View0.867Liu K.Deep Associated Elastic Tracker For Intelligent Traffic IntersectionsAIChallengeIoT 2020 - Proceedings of the 2020 2nd International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things (2020)
50553 View0.866Duan Z.; Yang Z.; Samoilenko R.; Oza D.S.; Jagadeesan A.; Sun M.; Ye H.; Xiong Z.; Zussman G.; Kostic Z.Smart City Traffic Intersection: Impact Of Video Quality And Scene Complexity On Precision And Inference2021 IEEE 23rd International Conference on High Performance Computing and Communications, 7th International Conference on Data Science and Systems, 19th International Conference on Smart City and 7th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Applications, HPCC-DSS-SmartCity-DependSys 2021 (2022)
17803 View0.866Dhanya D.; Jasmine R.R.; Kokila M.L.S.; Sakthivel M.; Divya N.; Boopathi S.Deep Learning Algorithms For Object Detection In Smart EnvironmentsNavigating Challenges of Object Detection through Cognitive Computing (2025)
41750 View0.865Minh H.T.; Mai L.; Minh T.V.Performance Evaluation Of Deep Learning Models On Embedded Platform For Edge Ai-Based Real Time Traffic Tracking And Detecting ApplicationsProceedings - 2021 15th International Conference on Advanced Computing and Applications, ACOMP 2021 (2021)