Smart City Gnosys

Smart city article details

Title Evaluating The Performance Of Pre-Trained Convolutional Neural Network For Audio Classification On Embedded Systems For Anomaly Detection In Smart Cities
ID_Doc 24672
Authors Lamrini M.; Chkouri M.Y.; Touhafi A.
Year 2023
Published Sensors, 23, 13
DOI http://dx.doi.org/10.3390/s23136227
Abstract Environmental Sound Recognition (ESR) plays a crucial role in smart cities by accurately categorizing audio using well-trained Machine Learning (ML) classifiers. This application is particularly valuable for cities that analyzed environmental sounds to gain insight and data. However, deploying deep learning (DL) models on resource-constrained embedded devices, such as Raspberry Pi (RPi) or Tensor Processing Units (TPUs), poses challenges. In this work, an evaluation of an existing pre-trained model for deployment on Raspberry Pi (RPi) and TPU platforms other than a laptop is proposed. We explored the impact of the retraining parameters and compared the sound classification performance across three datasets: ESC-10, BDLib, and Urban Sound. Our results demonstrate the effectiveness of the pre-trained model for transfer learning in embedded systems. On laptops, the accuracy rates reached 96.6% for ESC-10, 100% for BDLib, and 99% for Urban Sound. On RPi, the accuracy rates were 96.4% for ESC-10, 100% for BDLib, and 95.3% for Urban Sound, while on RPi with Coral TPU, the rates were 95.7% for ESC-10, 100% for BDLib and 95.4% for the Urban Sound. Utilizing pre-trained models reduces the computational requirements, enabling faster inference. Leveraging pre-trained models in embedded systems accelerates the development, deployment, and performance of various real-time applications. © 2023 by the authors.
Author Keywords deep learning; embedded system; environment sound recognition; pre-trained models


Similar Articles


Id Similarity Authors Title Published
52318 View0.907Nogueira A.F.R.; Oliveira H.S.; Machado J.J.M.; Tavares J.M.R.S.Sound Classification And Processing Of Urban Environments: A Systematic Literature ReviewSensors, 22, 22 (2022)
58701 View0.904Goulão M.; Bandeira L.; Martins B.; L. Oliveira A.Training Environmental Sound Classification Models For Real-World Deployment In Edge DevicesDiscover Applied Sciences, 6, 4 (2024)
47334 View0.896Paissan F.; Ancilotto A.; Brutti A.; Farella E.Scalable Neural Architectures For End-To-End Environmental Sound ClassificationICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2022-May (2022)
58279 View0.893Vijay M.; Ruthwik Saran K.; Reddy K.R.; Aditya Ram K.; Babu J.Y.Towards Robust Environmental Sound Classification: A Deep Learning Approach Leveraging Time-Frequency Representations2nd International Conference on Emerging Research in Computational Science, ICERCS 2024 (2024)
14555 View0.889Seker H.; Inik O.Cnnsound: Convolutional Neural Networks For The Classification Of Environmental SoundsACM International Conference Proceeding Series (2020)
14284 View0.886Reddy B.S.; Chowdary D.M.; Srinivas R.; Rahmani M.O.Classification Of Environmental And Urban Sounds Using Deep Learning Techniques4th IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics, ICDCECE 2025 (2025)
7700 View0.885Zhang D.; Zhong Z.; Xia Y.; Wang Z.; Xiong W.An Automatic Classification System For Environmental Sound In Smart CitiesSensors, 23, 15 (2023)
59656 View0.885Hidayat A.; Njoo D.B.P.; Adrian G.D.; Setyoko D.E.; Wijanarko B.D.Unlocking Soundscapes: Harnessing Machine Learning For Sound ClassificationProceeding of 2024 9th International Conference on Information Technology and Digital Applications, ICITDA 2024 (2024)
60186 View0.883Agarwal M.; Gill K.S.; Aggarwal P.; Rawat R.S.; Sunil G.Urban Sound Classification Using Vgg19 Convolutional Neural Network (Cnn) Model And Its Visualisation4th International Conference on Innovative Practices in Technology and Management 2024, ICIPTM 2024 (2024)
14305 View0.883Agarwal M.; Gill K.S.; Chattopadhyay S.; Singh M.Classification Of Urban Sound Using Sequential Convolutional Neural Network (Cnn) Model And Its Visualisation2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems, ICITEICS 2024 (2024)