Smart City Gnosys

Smart city article details

Title Enhancing Rf Fingerprinting For Indoor Positioning Systems Using Data Augmentation
ID_Doc 23918
Authors Junoh S.A.; Jamil S.; Pyun J.-Y.
Year 2024
Published Digest of Technical Papers - IEEE International Conference on Consumer Electronics
DOI http://dx.doi.org/10.1109/ICCE59016.2024.10444463
Abstract Indoor Positioning Systems (IPS) have recently emerged as a crucial technology in the Internet of Things (IoT), with widespread applications in smart cities and homes. Radio frequency-based fingerprinting, enabling location estimation through signal observations, requires manual surveys for constructing location maps. This process involves annotating radio signatures with corresponding locations, rendering it time-consuming and labor-intensive. To address this challenge, our paper proposes a data augmentation method that leverages a conditional generative adversarial network with LSTM and CNN. This approach effectively captures patterns in the training data, generating synthetic data that aligns with the distribution. Experiments in a real scenario demonstrate an average localization error of 1.966 and 1.218 m for Wi-Fi and Bluetooth low energy (BLE), surpassing traditional fingerprinting and comparable to the baseline data augmentation methods. © 2024 IEEE.
Author Keywords Bluetooth low energy (BLE); data augmentation; fingerprinting localization; Generative adversarial network (GAN); Internet of Things; Wi-Fi


Similar Articles


Id Similarity Authors Title Published
31241 View0.868Neupane I.; Shahrestani S.; Ruan C.Indoor Localization Of Resource-Constrained Iot Devices Using Wi-Fi Fingerprinting And Convolutional Neural NetworkACM International Conference Proceeding Series (2024)
14554 View0.862Song X.; Fan X.; He X.; Xiang C.; Ye Q.; Huang X.; Fang G.; Chen L.L.; Qin J.; Wang Z.Cnnloc: Deep-Learning Based Indoor Localization With Wifi FingerprintingProceedings - 2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019 (2019)
22972 View0.857Maghdid H.S.; Ghafoor K.Z.; Al-Talabani A.; Sadiq A.S.; Singh P.K.; Rawat D.B.Enabling Accurate Indoor Localization For Different Platforms For Smart Cities Using A Transfer Learning AlgorithmInternet Technology Letters, 5, 1 (2022)