Smart City Gnosys

Smart city article details

Title Enhanced Recyclenet For Efficient Waste Classification
ID_Doc 23663
Authors Adhikari B.; Ranabhat R.K.; Rahman M.M.; Kashef R.
Year 2022
Published 2022 9th International Conference on Soft Computing and Machine Intelligence, ISCMI 2022
DOI http://dx.doi.org/10.1109/ISCMI56532.2022.10068455
Abstract Segregation of recyclable waste items is one of the crucial aspects of smart cities and their industrial applications. CNN-based machine learning models are widely used to predict and classify image datasets. Traditional deep learning models are fast in training the image dataset, but the classification accuracy is usually too low. Different densely connected CNN architectures are widely used to improve the accuracy in the image waste classification. Despite the remarkable accuracy in such densely connected models, these models often suffer from high computational complexity during the training phase. To overcome this computational complexity, DenseNet121 has been developed, which reduces the training time due to its unique dense block architecture. RecycleNet is a modification of DenseNet121 where the skip connections in the dense block architecture are changed to reduce the computational complexity. In this paper, we propose a unique model called Enhanced RecycleNet, where the skip connections between the dense block architecture are reduced to one-third than in the DenseNet121 model. This unique architecture has improved the model's performance by 46.3% and decreased the trainable parameters from 7 million to about 2.4 million. © 2022 IEEE.
Author Keywords CNN; Deep Learning; DenseNet121; Machine Learning; RecycleNet


Similar Articles


Id Similarity Authors Title Published
58394 View0.93Islam M.; Hasan S.M.M.; Rakib H.; Uddin P.; Mamun A.Towards Sustainable Solutions: Effective Waste Classification Framework Via Enhanced Deep Convolutional Neural NetworksPLOS ONE, 20, 6 June (2025)
23601 View0.927Kabilan B.; Sairam R.; Praveen M.Enhanced Cnn Architecture For Accurate Waste Classification In Smart CitiesProceedings of 5th International Conference on IoT Based Control Networks and Intelligent Systems, ICICNIS 2024 (2024)
4798 View0.925Lilhore U.K.; Simaiya S.; Dalal S.; Damaševičius R.A Smart Waste Classification Model Using Hybrid Cnn-Lstm With Transfer Learning For Sustainable EnvironmentMultimedia Tools and Applications, 83, 10 (2024)
61435 View0.924Ruiz V.; Sánchez Á.; Vélez J.F.; Raducanu B.Waste Classification With Small Datasets And Limited ResourcesIntelligent Systems Reference Library, 224 (2022)
22313 View0.91Chauhan R.; Shighra S.; Madkhali H.; Nguyen L.; Prasad M.Efficient Future Waste Management: A Learning-Based Approach With Deep Neural Networks For Smart System (Lads)Applied Sciences (Switzerland), 13, 7 (2023)
1329 View0.906Gomathi K.; Narayanan L.K.A Deep Learning Aided Smart Waste Classification System For Smart CitiesProceedings - 2024 IEEE 16th International Conference on Communication Systems and Network Technologies, CICN 2024 (2024)
8552 View0.905Selvi S.; Elamathy G.O.; Kirana B.; Swetha S.An Intelligent Solid Waste Classification And Monitoring Alert System Using Deep Learning2024 International Conference on Integration of Emerging Technologies for the Digital World, ICIETDW 2024 (2024)
52263 View0.904Ramya R.; Vinitha Shree S.; Yogeshwari S.; Venkatesan S.Solid Waste Identification And Classification Method Based On Feature Selection And Hybrid Resnet Cnn Models In Smart EnvironmentLecture Notes in Networks and Systems, 730 LNNS (2023)
32693 View0.903Tiwari S.; Bisht S.; Sharma K.Intelligent Waste Management Using Wasteiqnet With Hierarchical Learning And Meta-OptimizationIEEE Access, 13 (2025)
24091 View0.903Srizon A.Y.; Sarker A.; Mamun M.A.; Faruk M.F.; Hasan S.M.M.Enhancing Waste Categorization Using Ensemble Of Transfer Learning And Light-Weight Convolutional Neural Network2023 International Conference on Next-Generation Computing, IoT and Machine Learning, NCIM 2023 (2023)