2780  | 0.931 | Benchimol P.; Amrani A.; Khouadjia M. | A Multi-Criteria Multi-Modal Predictive Trip Planner: Application On Paris Metropolitan Network | 2021 IEEE International Smart Cities Conference, ISC2 2021 (2021) |
17407  | 0.873 | Patel M.; Patel S.B.; Swain D. | Data-Driven Decision Support By Utilizing Machine Learning To Predict Passenger Flow For Route And Station Optimization | Journal of The Institution of Engineers (India): Series B (2025) |
58943  | 0.871 | Kodama Y.; Akeyama Y.; Miyazaki Y.; Takeuchi K. | Travel Demand Prediction With Application To Commuter Demand Estimation On Urban Railways | WWW 2024 Companion - Companion Proceedings of the ACM Web Conference (2024) |
8885  | 0.871 | Shiming M.; Shan L.; Quansheng L. | An Optimized Lstm Passenger Flow Prediction Model For Smart Cities | Proceedings - 2023 3rd Asia-Pacific Conference on Communications Technology and Computer Science, ACCTCS 2023 (2023) |
48150  | 0.864 | Li B.; Guo T.; Li R.; Wang Y.; Gandomi A.H.; Chen F. | Self-Adaptive Predictive Passenger Flow Modeling For Large-Scale Railway Systems | IEEE Internet of Things Journal, 10, 16 (2023) |
21284  | 0.858 | Xie M.; Zou T.; Ye J.; Du B.; Huang R. | Dynamic Graph Representation Learning For Passenger Behavior Prediction | Future Internet, 16, 8 (2024) |
35908  | 0.858 | Park Y.; Choi Y.; Kim K.; Yoo J.K. | Machine Learning Approach For Study On Subway Passenger Flow | Scientific Reports, 12, 1 (2022) |
59888  | 0.856 | Russo F.; Comi A. | Urban Courier Delivery In A Smart City: The User Learning Process Of Travel Costs Enhanced By Emerging Technologies | Sustainability (Switzerland), 15, 23 (2023) |