Smart City Gnosys

Smart city article details

Title Energy-Efficient Resource Allocation For Urban Traffic Flow Prediction In Edge-Cloud Computing
ID_Doc 23509
Authors Ali A.; Ullah I.; Singh S.K.; Sharafian A.; Jiang W.; I. Sherazi H.; Bai X.
Year 2025
Published International Journal of Intelligent Systems, 2025, 1
DOI http://dx.doi.org/10.1155/int/1863025
Abstract Understanding complex traffic patterns has become more challenging in the context of rapidly growing city road networks, especially with the rise of Internet of Vehicles (IoV) systems that add further dynamics to traffic flow management. This involves understanding spatial relationships and nonlinear temporal associations. Accurately predicting traffic in these scenarios, particularly for long-term sequences, is challenging due to the complexity of the data involved in smart city contexts. Traditional ways of predicting traffic flow use a single fixed graph structure based on the location. This structure does not consider possible correlations and cannot fully capture long-term temporal relationships among traffic flow data, making predictions less accurate. We propose a novel traffic prediction framework called Multi-scale Attention-Based Spatio-Temporal Graph Convolution Recurrent Network (MASTGCNet) to address this challenge. MASTGCNet records changing features of space and time by combining gated recurrent units (GRUs) and graph convolution networks (GCNs). Its design incorporates multiscale feature extraction and dual attention mechanisms, effectively capturing informative patterns at different levels of detail. Furthermore, MASTGCNet employs a resource allocation strategy within edge computing to reduce energy usage during prediction. The attention mechanism helps quickly decide which services are most important. Using this information, smart cities can assign tasks and allocate resources based on priority to ensure high-quality service. We have tested this method on two different real-world datasets and found that MASTGCNet predicts significantly better than other methods. This shows that MASTGCNet is a step forward in traffic prediction. Copyright © 2025 Ahmad Ali et al. International Journal of Intelligent Systems published by John Wiley & Sons Ltd.
Author Keywords attention mechanism; edge computing; internet of vehicles; resource allocation; smart city; traffic prediction


Similar Articles


Id Similarity Authors Title Published
37214 View0.931Yu W.; Wu S.; Huang M.Mmgfra: A Multiscale Multigraph Learning Framework For Traffic Prediction In Smart CitiesEarth Science Informatics, 16, 3 (2023)
58579 View0.929Zhao J.Traffic Flow Prediction Based On Adjacency Graph And Attention Mechanism2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology, AINIT 2024 (2024)
4883 View0.926Cao S.; Wu L.; Wu J.; Wu D.; Li Q.A Spatio-Temporal Sequence-To-Sequence Network For Traffic Flow PredictionInformation Sciences, 610 (2022)
35590 View0.924Remmouche B.; Boukraa D.; Zakharova A.; Bouwmans T.; Taffar M.Long-Term Spatio-Temporal Graph Attention Network For Traffic ForecastingExpert Systems with Applications, 288 (2025)
53044 View0.924Meng X.; Xie W.; Cui J.Stmgfn: Spatio-Temporal Multi-Graph Fusion Network For Traffic Flow PredictionLecture Notes in Computer Science, 15291 LNCS (2025)
37213 View0.924Meng X.; Xie W.; Cui J.Mmgcrn: Multimodal And Multiview Graph Convolutional Recurrent Network For Traffic PredictionProceedings of the International Conference on Software Engineering and Knowledge Engineering, SEKE (2024)
40011 View0.922Luo G.; Zhang H.; Yuan Q.; Li J.; Wang W.; Wang F.-Y.One Size Fits All: A Unified Traffic Predictor For Capturing The Essential Spatial-Temporal DependencyIEEE Transactions on Neural Networks and Learning Systems, 35, 8 (2024)
11029 View0.921Zhang H.; Liu J.; Tang Y.; Xiong G.Attention Based Graph Covolution Networks For Intelligent Traffic Flow AnalysisIEEE International Conference on Automation Science and Engineering, 2020-August (2020)
38047 View0.921Yang S.; Wu Q.; Wang Y.; Zhou Z.Mstdfgrn: A Multi-View Spatio-Temporal Dynamic Fusion Graph Recurrent Network For Traffic Flow PredictionComputers and Electrical Engineering, 123 (2025)
44472 View0.92Nie X.; Peng J.; Wu Y.; Gupta B.B.; El-Latif A.A.A.Real-Time Traffic Speed Estimation For Smart Cities With Spatial Temporal Data: A Gated Graph Attention Network ApproachBig Data Research, 28 (2022)