Smart City Gnosys

Smart city article details

Title Energy Demand Forecasting Using Deep Learning
ID_Doc 23190
Authors Hrnjica B.; Mehr A.D.
Year 2020
Published EAI/Springer Innovations in Communication and Computing
DOI http://dx.doi.org/10.1007/978-3-030-14718-1_4
Abstract Our cities face non-stop growth in population and infrastructures and require more energy every day. Energy management is the key success for the smart cities concept since electricity is one of the essential resources which has no alternatives. The basic role of the smart energy concept is to optimize the consumption and demand in a smart way in order to decrease the energy costs and increase efficiency. Among the variety of benefits, the smart energy concept mainly enhances the quality of life of the inhabitants of the cities as well as making the environment cleaner. One of the approaches for the smart energy concept is to develop prediction models using machine learning, ML algorithms in order to forecast energy demand, especially for daily and weekly periods. The upcoming chapter describes thoroughly what is behind the deep learning concept as a subset of ML and how neural networks can be applied for developing energy prediction models. A specialized version of the recurrent neural network (RNN), e.g., long short-term memory (LSTM), is described in detail. In addition, the chapter tries to answer the question as to why the LSTM is a state-of-the-art ML algorithm in time series modeling today. To this end, we introduce ANNdotNET, which provides a user-friendly ML framework with capability of importing data from the smart grids of a smart city. By design, the ANNdotNET is a cloud solution which can be connected by other Internet of Things, IoT, devices for data collecting, feeding, and providing efficient models to energy managers in a bigger smart city cloud solution. As an example, the chapter provides the evolution of daily and weekly energy demand models for Nicosia, the capital of Northern Cyprus. Currently, energy demand predictions for the city are not as efficient as expected. Therefore, the results of this chapter can be used as efficient alternatives for IoT-based energy prediction models in any smart city. © 2020, Springer Nature Switzerland AG.
Author Keywords


Similar Articles


Id Similarity Authors Title Published
17962 View0.906Aljohani A.Deep Learning-Based Optimization Of Energy Utilization In Iot-Enabled Smart Cities: A Pathway To Sustainable DevelopmentEnergy Reports, 12 (2024)
26837 View0.901Helli S.S.; Tanberk S.; Demir O.Forecasting Energy Consumption Using Deep Learning In Smart CitiesProceedings - 2022 International Conference on Artificial Intelligence of Things, ICAIoT 2022 (2022)
38700 View0.898Amalou I.; Mouhni N.; Abdali A.Multivariate Time Series Prediction By Rnn Architectures For Energy Consumption ForecastingEnergy Reports, 8 (2022)
3739 View0.897Noaman S.A.; Ahmed A.M.S.; Salman A.D.A Prediction Model Of Power Consumption In Smart City Using Hybrid Deep Learning AlgorithmInternational Journal on Informatics Visualization, 7, 4 (2023)
50953 View0.894Tripathy N.; Tripathy S.S.Smart Green Cities Using Iot-Based Deep Reinforcement Learning Energy ManagementInternet of Things and Big Data Analytics for a Green Environment (2024)
1332 View0.891Babuji R.; Pious A.E.; Vinu A.T.; Devi V.; Thiripurasundari D.; Kumar S.S.A Deep Learning Approach For Intelligent Iot Based Energy Management SystemInternational Conference on Sustainable Computing and Data Communication Systems, ICSCDS 2022 - Proceedings (2022)
54322 View0.891Ardabili S.; Abdolalizadeh L.; Mako C.; Torok B.; Mosavi A.Systematic Review Of Deep Learning And Machine Learning For Building EnergyFrontiers in Energy Research, 10 (2022)
7417 View0.89Sunder R.; R S.; Paul V.; Punia S.K.; Konduri B.; Nabilal K.V.; Lilhore U.K.; Lohani T.K.; Ghith E.; Tlija M.An Advanced Hybrid Deep Learning Model For Accurate Energy Load Prediction In Smart BuildingEnergy Exploration and Exploitation, 42, 6 (2024)
6496 View0.887Rojek I.; Mikołajewski D.; Galas K.; Piszcz A.Advanced Deep Learning Algorithms For Energy Optimization Of Smart CitiesEnergies, 18, 2 (2025)
23183 View0.886Binbusayyis A.; Sha M.Energy Consumption Prediction Using Modified Deep Cnn-Bi Lstm With Attention MechanismHeliyon, 11, 1 (2025)