Smart City Gnosys

Smart city article details

Title Embedded Federated Learning For Vanet Environments
ID_Doc 22682
Authors Valente R.; Senna C.; Rito P.; Sargento S.
Year 2023
Published Applied Sciences (Switzerland), 13, 4
DOI http://dx.doi.org/10.3390/app13042329
Abstract In the scope of smart cities, the sensors scattered throughout the city generate information that supplies intelligence mechanisms to learn the city’s mobility patterns. These patterns are used in machine learning (ML) applications, such as traffic estimation, that allow for improvement in the quality of experience in the city. Owing to the Internet-of-Things (IoT) evolution, the city’s monitoring points are always growing, and the transmission of the mass of data generated from edge devices to the cloud, required by centralized ML solutions, brings great challenges in terms of communication, thus negatively impacting the response time and, consequently, compromising the reaction in improving the flow of vehicles. In addition, when moving between the edge and the cloud, data are exposed, compromising privacy. Federated learning (FL) has emerged as an option for these challenges: (1) It has lower latency and communication overhead when performing most of the processing on the edge devices; (2) it improves privacy, as data do not travel over the network; and (3) it facilitates the handling of heterogeneous data sources and expands scalability. To assess how FL can effectively contribute to smart city scenarios, we present an FL framework, for which we built a testbed that integrated the components of the city infrastructure, where edge devices such as NVIDIA Jetson were connected to a cloud server. We deployed our lightweight container-based FL framework in this testbed, and we evaluated the performance of devices, the effectiveness of ML and aggregation algorithms, the impact on the communication between the edge and the server, and the consumption of resources. To carry out the evaluation, we opted for a scenario in which we estimated vehicle mobility inside and outside the city, using real data collected by the Aveiro Tech City Living Lab communication and sensing infrastructure in the city of Aveiro, Portugal. © 2023 by the authors.
Author Keywords distributed forecasting; federated learning; FL on edge devices; smart city


Similar Articles


Id Similarity Authors Title Published
26356 View0.936Valente R.; Senna C.; Rito P.; Sargento S.Federated Learning Framework To Decentralize Mobility Forecasting In Smart CitiesProceedings of IEEE/IFIP Network Operations and Management Symposium 2023, NOMS 2023 (2023)
26367 View0.897Verma R.K.; Kishor K.; Galletta A.Federated Learning Shaping The Future Of Smart City InfrastructureFederated Learning for Smart Communication using IoT Application (2024)
26359 View0.888Gandhi M.; Singh S.K.; Ravikumar R.N.; Vaghela K.Federated Learning In Secure Smart City Sensing: Challenges And OpportunitiesEdge of Intelligence: Exploring the Frontiers of AI at the Edge (2025)
1664 View0.884Khatua S.; De D.; Maji S.; Maity S.; Nielsen I.E.A Federated Learning Model For Integrating Sustainable Routing With The Internet Of Vehicular Things Using Genetic AlgorithmDecision Analytics Journal, 11 (2024)
26365 View0.883Aggarwal M.; Khullar V.; Rani S.; André Prola T.; Bhattacharjee S.B.; Shawon S.M.; Goyal N.Federated Learning On Internet Of Things: Extensive And Systematic ReviewComputers, Materials and Continua, 79, 2 (2024)
37227 View0.883Barreto B.; Senna C.; Rito P.; Sargento S.Mobfedls: A Framework To Provide Federated Learning For Mobile Nodes In V2X EnvironmentsFuture Generation Computer Systems, 163 (2025)
31901 View0.882Tangirala N.T.; Sommer C.; Knoll A.Integrated Simulation Of Federated Learning For Large Scale Intelligent Transportation SystemsIEEE Vehicular Networking Conference, VNC (2025)
26352 View0.88Pandya S.; Srivastava G.; Jhaveri R.; Babu M.R.; Bhattacharya S.; Maddikunta P.K.R.; Mastorakis S.; Piran M.J.; Gadekallu T.R.Federated Learning For Smart Cities: A Comprehensive SurveySustainable Energy Technologies and Assessments, 55 (2023)
26362 View0.879Jiang J.C.; Kantarci B.; Oktug S.; Soyata T.Federated Learning In Smart City Sensing: Challenges And OpportunitiesSensors (Switzerland), 20, 21 (2020)
26308 View0.878Sepasgozar S.S.; Pierre S.Fed-Ntp: A Federated Learning Algorithm For Network Traffic Prediction In VanetIEEE Access, 10 (2022)