60161  | 0.911 | Wu Y.; Zhang H.; Li C.; Tao S.; Yang F. | Urban Ride-Hailing Demand Prediction With Multi-View Information Fusion Deep Learning Framework | Applied Intelligence, 53, 8 (2023) |
54463  | 0.895 | Askari B.; Le Quy T.; Ntoutsi E. | Taxi Demand Prediction Using An Lstm-Based Deep Sequence Model And Points Of Interest | Proceedings - 2020 IEEE 44th Annual Computers, Software, and Applications Conference, COMPSAC 2020 (2020) |
5524  | 0.886 | Xue X.; Zhou C.; Zhang X.; Guo J. | A Taxi Demand Prediction Model Based On Spectral Domain Graph Convolution | Proceedings of SPIE - The International Society for Optical Engineering, 12613 (2023) |
2708  | 0.885 | Boumeddane S.; Hamdad L.; El-Feda Bouregag A.A.; Damene M.; Sadeg S. | A Model Stacking Approach For Ride-Hailing Demand Forecasting : A Case Study Of Algiers | 2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-Being, IHSH 2020 (2021) |
38444  | 0.883 | Wu M.; Zhu C.; Chen L. | Multi-Task Spatial-Temporal Graph Attention Network For Taxi Demand Prediction | ACM International Conference Proceeding Series (2020) |
21159  | 0.881 | Yang T.; Tang X.; Liu R. | Dual Temporal Gated Multi-Graph Convolution Network For Taxi Demand Prediction | Neural Computing and Applications, 35, 18 (2023) |
33112  | 0.881 | Du C.; Samonte M.J.C. | Internet Taxi Trip Prediction Based On Multi-Source Data Fusion | Advances in Transdisciplinary Engineering, 61 (2024) |
52523  | 0.88 | Shu P.; Sun Y.; Zhao Y.; Xu G. | Spatial-Temporal Taxi Demand Prediction Using Lstm-Cnn | IEEE International Conference on Automation Science and Engineering, 2020-August (2020) |
26834  | 0.876 | Cavus M.; Ayan H.; Dissanayake D.; Sharma A.; Deb S.; Bell M. | Forecasting Electric Vehicle Charging Demand In Smart Cities Using Hybrid Deep Learning Of Regional Spatial Behaviours | Energies, 18, 13 (2025) |
16383  | 0.869 | Liu Z.; Liu X.; Wang Y.; Yan X. | Coupling Travel Characteristics Identifying And Deep Learning For Demand Forecasting On Car-Hailing Tourists: A Case Study Of Beijing, China | IET Intelligent Transport Systems, 18, 4 (2024) |