Smart City Gnosys

Smart city article details

Title Driver Behavior Indices From Large-Scale Fleet Telematics Data As Surrogate Safety Measures
ID_Doc 21013
Authors Alrassy P.; Smyth A.W.; Jang J.
Year 2023
Published Accident Analysis and Prevention, 179
DOI http://dx.doi.org/10.1016/j.aap.2022.106879
Abstract Large-scale telematics data enable a high-resolution inference of road network's safety conditions and driver behavior. Although many researchers have investigated how to define meaningful safety surrogates and crash predictors from telematics, no comprehensive study analyzes the driver behavior derived from large-scale telematics data and relates them to crash data and the road networks in metropolitan cities. This study extracts driver behavior indices (e.g., speed, speed variation, hard braking rate, and hard acceleration rate) from large-scale telematics data, collected from 4000 vehicles in New York City five boroughs. These indices are compared to collision frequencies and collision rates at the street level. Moderate correlations were found between the safety surrogate measures and collision rates, summarized as follows: (i) When normalizing crash frequencies with traffic volume, using a traffic AADT model, safety-critical regions almost remain the same. (ii) The correlation magnitude of hard braking and hard acceleration varies by road types: hard braking clusters are more indicative of higher collision rates on highways, whereas hard acceleration is a stronger hazard indicator on non-highway urban roads. (iii) Locations with higher travel times coincide with locations of high crash incidence on non-highway roads. (iv) However, speeding on highways is indicative of collision risks. After establishing the spatial correlation between the driver behavior indices and crash data, two prototype safety metrics are proposed: speed corridor maps and hard braking and hard acceleration hot-spots. Overall, this paper shows that data-driven network screening enabled by telematics has great potential to advance our understanding of road safety assessment. © 2022 Elsevier Ltd
Author Keywords Collisions data; Hard acceleration; Hard braking; Safety surrogate measures; Smart cities; Speed; Telematics


Similar Articles


Id Similarity Authors Title Published
9457 View0.875Ferreira-Vanegas C.M.; Velez J.I.; Garcia-Llinas G.A.Analytical Methods And Determinants Of Frequency And Severity Of Road Accidents: A 20-Year Systematic Literature ReviewJournal of Advanced Transportation, 2022 (2022)
25928 View0.875Balsa-Barreiro J.; Valero-Mora P.M.; Menéndez M.; Mehmood R.Extraction Of Naturalistic Driving Patterns With Geographic Information SystemsMobile Networks and Applications, 28, 2 (2023)
41962 View0.862Das D.; Bhattacharjee S.; Chakraborty S.; Mitra B.; Das S.K.Pervasive Sensing To Correlate Vehicle Driving Behavior With City-Scale Traffic DynamicsIEEE Pervasive Computing (2025)
21038 View0.855Li T.; Alhilal A.; Zhang A.; Hoque M.A.; Chatzopoulos D.; Xiao Z.; Li Y.; Hui P.Driving Big Data: A First Look At Driving Behavior Via A Large-Scale Private Car DatasetProceedings - 2019 IEEE 35th International Conference on Data Engineering Workshops, ICDEW 2019 (2019)