Smart City Gnosys

Smart city article details

Title A High-Density Digital Environmental Monitoring System For Vehicle Emissions
ID_Doc 2076
Authors Shepelev V.; Vorobyev A.; Kurmanov A.
Year 2024
Published RusAutoCon - Proceedings of the International Russian Automation Conference, 2024
DOI http://dx.doi.org/10.1109/RusAutoCon61949.2024.10694330
Abstract Air quality is a critical issue for populations living in large cities with developed transportation infrastructures. Transport makes a significant contribution to air pollution, and in the era of rapid technological development, the application of intelligent transportation systems, and the advancement of smart cities, the problem of air quality remains acute. Oversaturated traffic flows are difficult to describe using mathematical models and apply effective management strategies. However, models based on the use of artificial neural networks can provide a solution. This paper proposes a strategy for air quality monitoring using a deeply trained neural network, which takes into account real-time parameters of traffic flow and meteorological conditions. This strategy has been successfully implemented in the city of Chelyabinsk, and the calculated data is correlated with data obtained from mobile laboratories at four stations located on one of the central streets of the city. © 2024 IEEE.
Author Keywords emissions of harmful substances; intelligent transport systems; mathematical model; monitoring


Similar Articles


Id Similarity Authors Title Published
21329 View0.905Shepelev V.; Glushkov A.; Ivanova O.; Bastrykina K.Dynamic Neural Network Model For Environmental Monitoring Of Vehicle Pollution In Urban Streets; [Модел Динамичке Неуронске Мреже За Праћење Животне Средине Загађења Возила У Урбаним Улицама]FME Transactions, 53, 1 (2025)
27256 View0.881Po L.; Rollo F.; Bachechi C.; Corni A.From Sensors Data To Urban Traffic Flow Analysis5th IEEE International Smart Cities Conference, ISC2 2019 (2019)
18669 View0.873Petry L.; Meiers T.; Reuschenberg D.; Mirzavand Borujeni S.; Arndt J.; Odenthal L.; Erbertseder T.; Taubenböck H.; Müller I.; Kalusche E.; Weber B.; Käflein J.; Mayer C.; Meinel G.; Gengenbach C.; Herold H.Design And Results Of An Ai-Based Forecasting Of Air Pollutants For Smart CitiesISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 8, 4/W1-2021 (2021)
19399 View0.87El Arfaoui A.; Nhaila H.; El Khaili M.Developing A Real-Time Atmospheric Pollutant Monitoring Method With High Accuracy And Wide Measurement Range2025 5th International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2025 (2025)
14482 View0.867Anusha N.; Jeslin J.G.; Srividhya V.; Gupta N.S.; Meenakshi R.; Srinivasan C.Cloud-Enabled Neural Networks For Intelligent Vehicle Emissions Tracking And Analysis2024 International Conference on Automation and Computation, AUTOCOM 2024 (2024)
17922 View0.865Priscila S.S.; Jayanthiladevi A.Deep Learning Technologies For The Assessment Of Air Pollution Level Systems In Smart CitiesInternational Journal of System of Systems Engineering, 13, 4 (2023)
35078 View0.865Alabi O.O.; Ajagbe S.A.; Kuti O.; Afe O.F.; Ajiboye G.O.; Adigun M.O.Leveraging Environmental Data For Intelligent Traffic Forecasting In Smart CitiesCommunications in Computer and Information Science, 2159 CCIS (2024)
10552 View0.862Neo E.X.; Hasikin K.; Lai K.W.; Mokhtar M.I.; Azizan M.M.; Hizaddin H.F.; Razak S.A.; YantoArtificial Intelligence-Assisted Air Quality Monitoring For Smart City ManagementPeerJ Computer Science, 9 (2023)
7139 View0.862Praveen R.V.S.; Vinoth B.; Sowmiya S.; Tharageswari K.; Vamsilala P.N.V.; Sathya R.Air Pollution Monitoring System Using Machine Learning Techniques For Smart Cities2nd International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2024 - Proceedings (2024)
42245 View0.861Faydi M.; Zrelli A.; Ezzedine T.Pm2.5 Prediction Using Deep Learning Models17th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2023 - Proceedings (2023)