Smart City Gnosys

Smart city article details

Title Deeprtp: A Deep Spatio-Temporal Residual Network For Regional Traffic Prediction
ID_Doc 18144
Authors Liu Z.; Huang M.; Ye Z.; Wu K.
Year 2019
Published Proceedings - 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2019
DOI http://dx.doi.org/10.1109/MSN48538.2019.00062
Abstract Accurate traffic prediction can benefit many smart city applications. Existing works mainly consider traffic prediction on each individual road segment, and heavily rely on some statistical or machine learning models, which suffer from either poor prediction accuracy or high computation overheads for predictions of the whole road network. In this paper, we instead consider the region-level traffic prediction that is still useful for many applications. To describe the regional traffic conditions and capture their spatio-temporal dependencies, we present a deep learning based model - DeepRTP. Specifically, we use a novel metric called Traffic State Index (TSI) to measure regional traffic conditions, and carefully classify traffic data into three categories that are used to capture hourly, daily, and weekly traffic patterns. Furthermore, we employ the convolutional and residual neural networks to model both spatial and temporal dependencies. Experimental results from real-world traffic data demonstrate that DeepRTP outperforms five baseline methods and can achieve higher prediction accuracy. © 2019 IEEE.
Author Keywords Deep residual network; Spatiotemporal dependency; Traffic prediction


Similar Articles


Id Similarity Authors Title Published
51592 View0.912Pritha A.; Fathima G.Smart Traffic Management: A Deep Learning Revolution In Traffic Prediction - A ReviewIET Conference Proceedings, 2024, 23 (2024)
52587 View0.909Priya K.; Omkar K.; Naresh R.; Venkatesh K.Spatio-Temporal Traffic Prediction In Urban Area Using Convolutional Temporal Network System6th International Conference on Mobile Computing and Sustainable Informatics, ICMCSI 2025 - Proceedings (2025)
52834 View0.907Dai F.; Huang P.; Mo Q.; Xu X.; Bilal M.; Song H.St-Innet: Deep Spatio-Temporal Inception Networks For Traffic Flow Prediction In Smart CitiesIEEE Transactions on Intelligent Transportation Systems, 23, 10 (2022)
3380 View0.906Hussain B.; Afzal M.K.; Anjum S.; Rao I.; Kim B.-S.A Novel Graph Convolutional Gated Recurrent Unit Framework For Network-Based Traffic PredictionIEEE Access, 11 (2023)
1395 View0.902Tripathi A.N.; Sharma B.A Deep Review: Techniques, Findings And Limitations Of Traffic Flow Prediction Using Machine LearningLecture Notes in Mechanical Engineering (2023)
20800 View0.901Diao Z.; Wang X.; Zhang D.; Xie G.; Chen J.; Pei C.; Meng X.; Xie K.; Zhang G.Dmstg: Dynamic Multiview Spatio-Temporal Networks For Traffic ForecastingIEEE Transactions on Mobile Computing, 23, 6 (2024)
21123 View0.898Hu J.; Lin X.; Wang C.Dstgcn: Dynamic Spatial-Temporal Graph Convolutional Network For Traffic PredictionIEEE Sensors Journal, 22, 13 (2022)
4883 View0.898Cao S.; Wu L.; Wu J.; Wu D.; Li Q.A Spatio-Temporal Sequence-To-Sequence Network For Traffic Flow PredictionInformation Sciences, 610 (2022)
13624 View0.897Uddin Gilani S.A.; Al-Rajab M.; Bakka M.Challenges And Opportunities In Traffic Flow Prediction: Review Of Machine Learning And Deep Learning Perspectives; [Desafíos Y Oportunidades En La Predicción Del Flujo De Tráfico: Revisión De Las Perspectivas De Aprendizaje Automático Y Aprendizaje Profundo]Data and Metadata, 3 (2024)
40011 View0.897Luo G.; Zhang H.; Yuan Q.; Li J.; Wang W.; Wang F.-Y.One Size Fits All: A Unified Traffic Predictor For Capturing The Essential Spatial-Temporal DependencyIEEE Transactions on Neural Networks and Learning Systems, 35, 8 (2024)