Smart City Gnosys

Smart city article details

Title Deep Learning Based Anomaly Detection For Fog-Assisted Iovs Network
ID_Doc 17829
Authors Yaqoob S.; Hussain A.; Subhan F.; Pappalardo G.; Awais M.
Year 2023
Published IEEE Access, 11
DOI http://dx.doi.org/10.1109/ACCESS.2023.3246660
Abstract Internet of vehicles (IoVs) allows millions of vehicles to be connected and share information for various purposes. The main applications of IoVs are traffic management, emergency messages delivery, E-health, traffic, and temperature monitoring. On the other hand, IoVs lack in location awareness and geographic distribution, which is critical for some IoVs applications such as smart traffic lights and information sharing in vehicles. To support these topographies, fog computing was proposed as an appealing and novel term, which was integrated with IoVs to extend storage, computation, and networking. Unfortunately, it is also challenged with various security and privacy hazards, which is a serious concern of smart cities. Therefore, we can formulate that Fog-assisted IoVs (Fa-IoVs), are challenged by security threats during information dissemination among mobile nodes. These security threats of Fa-IoVs are considered as anomalies which is a serious concern that needs to be addressed for smooth Fa-IoVs network communication. Here, smooth communication refers to less risk of important data loss, delay, communication overhead, etc. This research work aims to identify research gaps in the Fa-IoVs network and present a deep learning-based dynamic scheme named CAaDet (Convolutional autoencoder Aided anomaly detection) to detect anomalies. CAaDet exploits convolutional layers with a customized autoencoder for useful feature extraction and anomaly detection. Performance evaluation of the proposed scheme is done by using the F1-score metric where experiments are carried out by exploiting a benchmark dataset named NSL-KDD. CAaDet also observes the behavior of fog nodes and hidden neurons and selects the best match to reduce false alarms and improve F1-score. The proposed scheme achieved significant improvement over existing schemes for anomaly detection. Identified research gaps in Fa-IoVs can give future directions to researchers and attract more attention to this new era. © 2013 IEEE.
Author Keywords anomaly detection; Fog computing; fog-assisted IoVs; Internet of Vehicles; smooth communication


Similar Articles


Id Similarity Authors Title Published
7014 View0.893Reis M.J.C.S.Ai-Driven Anomaly Detection For Securing Iot Devices In 5G-Enabled Smart CitiesElectronics (Switzerland), 14, 12 (2025)
17981 View0.88Himdi T.; Ishaque M.Deep Learning-Enhanced Anomaly Detection For Iot Security In Smart CitiesARPN Journal of Engineering and Applied Sciences, 19, 6 (2024)
33032 View0.879Dawoud A.; Sianaki O.A.; Shahristani S.; Raun C.Internet Of Things Intrusion Detection: A Deep Learning Approach2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 (2020)
5688 View0.875Hamdan M.; Eldhai A.M.; Abdelsalam S.; Ullah K.; Bashir A.K.; Marsono M.N.; Kon F.; Batista D.M.A Two-Tier Anomaly-Based Intrusion Detection Approach For Iot-Enabled Smart CitiesIEEE INFOCOM 2023 - Conference on Computer Communications Workshops, INFOCOM WKSHPS 2023 (2023)
47813 View0.872Jain R.; Tihanyi N.; Ferrag M.A.Securing Tomorrow’S Smart Cities: Investigating Software Security In Internet Of Vehicles And Deep Learning TechnologiesLecture Notes in Intelligent Transportation and Infrastructure, Part F99 (2025)
6497 View0.869Goyal H.R.; Husain S.O.; Dixit K.K.; Boob N.S.; Reddy B.R.; Kumar J.; Sharma S.Advanced Deep Learning Approaches For Real-Time Anomaly Detection In Iot EnvironmentsProceedings of International Conference on Contemporary Computing and Informatics, IC3I 2024 (2024)
58842 View0.866Aleisa H.N.; Alrowais F.; Allafi R.; Almalki N.S.; Faqih R.; Marzouk R.; Alnfiai M.M.; Motwakel A.; Ibrahim S.S.Transforming Transportation: Safe And Secure Vehicular Communication And Anomaly Detection With Intelligent Cyber-Physical System And Deep LearningIEEE Transactions on Consumer Electronics, 70, 1 (2024)
9648 View0.866Alsoufi M.A.; Razak S.; Siraj M.M.; Nafea I.; Ghaleb F.A.; Saeed F.; Nasser M.Anomaly-Based Intrusion Detection Systems In Iot Using Deep Learning: A Systematic Literature ReviewApplied Sciences (Switzerland), 11, 18 (2021)
22878 View0.865Anu Priya S.; Rajesh kanna B.; Beaulah Jeyavathana R.; Bhat N.; Rajalakshmi S.; Srimathi S.Employing A Deep Learning Technique To Categorize Internet Of Things (Iot) Traffic In A Smart City Context2023 IEEE International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, RMKMATE 2023 (2023)
39047 View0.864Liu J.; Liu Y.; Lin J.; Li J.; Cao L.; Sun P.; Hu B.; Song L.; Boukerche A.; Leung V.C.M.Networking Systems For Video Anomaly Detection: A Tutorial And SurveyACM Computing Surveys, 57, 10 (2025)