38914  | 0.89 | Xiang C.-C.; Li Y.-Y.; Feng L.; Chen C.; Guo S.-T.; Yang P.-L. | Near-Optimal Vehicular Crowdsensing Task Allocation Empowered By Deep Reinforcement Learning; [基于深度强化学习的智联网汽车感知任务分配] | Jisuanji Xuebao/Chinese Journal of Computers, 45, 5 (2022) |
52623  | 0.867 | Guo X.; Huang F.; Yang D.; Tu C.; Yu Z.; Guo W. | Spatiotemporal Fracture Data Inference In Sparse Mobile Crowdsensing: A Graph- And Attention-Based Approach | IEEE/ACM Transactions on Networking, 32, 2 (2024) |
58452  | 0.856 | Di Martino S.; Starace L.L.L. | Towards Uniform Urban Map Coverage In Vehicular Crowd-Sensing: A Decentralized Incentivization Solution | IEEE Open Journal of Intelligent Transportation Systems, 3 (2022) |
60990  | 0.855 | Yu T.-Y.; Zhu X.; Maheswaran M. | Vehicular Crowdsensing For Smart Cities | Handbook of Smart Cities: Software Services and Cyber Infrastructure (2018) |
31074  | 0.854 | Xu, SS; Chen, XL; Pi, XD; Joe-Wong, C; Zhang, P; Noh, HY | Incentivizing Large-Scale Vehicular Crowdsensing System For Smart City Applications | SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2019, 10970 (2019) |
4884  | 0.852 | Zhao B.; Dong H.; Yang D. | A Spatio-Temporal Task Allocation Model In Mobile Crowdsensing Based On Knowledge Graph | Smart Cities, 6, 4 (2023) |