45511  | 0.872 | Zhao R.; Hao J.; Huo H. | Research On Multi-Modal Pedestrian Detection And Tracking Algorithm Based On Deep Learning | Future Internet, 16, 6 (2024) |
23647  | 0.869 | Bhonde T.; Temare H.; Dadwhal Y.S. | Enhanced Object Detection Using Yolov8: Identifying Vehicles And Pedestrians In Urban Environments | 2024 IEEE Pune Section International Conference, PuneCon 2024 (2024) |
62125  | 0.862 | Song F.; Li P. | Yolov5-Ms: Real-Time Multi-Surveillance Pedestrian Target Detection Model For Smart Cities | Biomimetics, 8, 6 (2023) |
39607  | 0.858 | Du L. | Object Detectors In Autonomous Vehicles: Analysis Of Deep Learning Techniques | International Journal of Advanced Computer Science and Applications, 14, 10 (2023) |
41546  | 0.858 | Kim D.H.; Moon J. | Pedrisknet: Classifying Pedestrian Situations In Surveillance Videos For Pedestrian Safety Monitoring In Smart Cities | Proceedings - IEEE International Conference on Advanced Video and Signal-Based Surveillance, AVSS, 2024 (2024) |
154  | 0.857 | Lima J.P.; Roberto R.; Figueiredo L.; Simões F.; Thomas D.; Uchiyama H.; Teichrieb V. | 3D Pedestrian Localization Using Multiple Cameras: A Generalizable Approach | Machine Vision and Applications, 33, 4 (2022) |
43782  | 0.851 | Tahir N.U.A.; Long Z.; Zhang Z.; Asim M.; ELAffendi M. | Pvswin-Yolov8S: Uav-Based Pedestrian And Vehicle Detection For Traffic Management In Smart Cities Using Improved Yolov8 | Drones, 8, 3 (2024) |