Smart City Gnosys

Smart city article details

Title Context-Aware Multiagent Broad Reinforcement Learning For Mixed Pedestrian-Vehicle Adaptive Traffic Light Control
ID_Doc 15928
Authors Zhu R.; Wu S.; Li L.; Lv P.; Xu M.
Year 2022
Published IEEE Internet of Things Journal, 9, 20
DOI http://dx.doi.org/10.1109/JIOT.2022.3167029
Abstract Efficient traffic light control is a critical part of realizing smart transportation. In particular, deep reinforcement learning (DRL) algorithms that use deep neural networks (DNNs) have superior autonomous decision-making ability. Most existing work has applied DRL to control traffic lights intelligently. In this article, we propose a novel context-aware multiagent broad reinforcement learning (CAMABRL) approach based on broad reinforcement learning (BRL) for mixed pedestrian-vehicle adaptive traffic light control (ATLC). CAMABRL exploits the broad learning system (BLS) established in a flat network structure to make decisions instead of a deep network structure. Unlike previous works that consider the attributes of vehicles, CAMABRL also takes the states of pedestrians waiting at the intersection into consideration. Combining with the context-aware mechanism that utilizes the states of adjacent agents and potential state information captured by the long short-term memory (LSTM) network, agents can make farsighted decisions to alleviate traffic congestion. The experimental results show that CAMABRL is superior to several state-of-the-art multiagent reinforcement learning (MARL) methods. © 2014 IEEE.
Author Keywords Broad reinforcement learning (BRL); context-aware; deep reinforcement learning (DRL); multiagent; smart transportation; traffic light control


Similar Articles


Id Similarity Authors Title Published
38098 View0.907Fereidooni Z.; Palesi L.A.I.; Nesi P.Multi-Agent Optimizing Traffic Light Signals Using Deep Reinforcement LearningIEEE Access, 13 (2025)
38103 View0.896Sabit H.Multi-Agent Reinforcement Learning For Smart City Automated Traffic Light ControlProceedings - 2023 IEEE International Conference on High Performance Computing and Communications, Data Science and Systems, Smart City and Dependability in Sensor, Cloud and Big Data Systems and Application, HPCC/DSS/SmartCity/DependSys 2023 (2023)
29723 View0.891Faqir N.; Ennaji Y.; Chakir L.; Boumhidi J.Hybrid Cnn-Lstm And Proximal Policy Optimization Model For Traffic Light Control In A Multi-Agent EnvironmentIEEE Access, 13 (2025)
2760 View0.884Qin B.; He W.; Zhang B.; Li J.A Multi-Agent Reinforcement Learning Framework With Recurrent Communication Module For Traffic Light Control2021 IEEE 4th International Conference on Information Systems and Computer Aided Education, ICISCAE 2021 (2021)
23735 View0.881Sattarzadeh A.R.; Pathirana P.N.Enhancing Adaptive Traffic Control Systems With Deep Reinforcement Learning And Graphical ModelsProceedings - 2024 IEEE International Conference on Future Machine Learning and Data Science, FMLDS 2024 (2024)
24038 View0.88Vieira M.A.; Galvão G.; Vieira M.; Véstias M.; Louro P.; Jardim-Goncalves R.Enhancing Traffic Flow With Visible Light Communication: A Deep Reinforcement Learning ApproachProceedings of SPIE - The International Society for Optical Engineering, 13374 (2025)
58613 View0.88Paduraru C.; Paduraru M.; Stefanescu A.Traffic Light Control Using Reinforcement Learning: A Survey And An Open Source ImplementationInternational Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings (2022)
32611 View0.877Zhu Y.; Cai M.; Schwarz C.W.; Li J.; Xiao S.Intelligent Traffic Light Via Policy-Based Deep Reinforcement LearningInternational Journal of Intelligent Transportation Systems Research, 20, 3 (2022)
6356 View0.876Kumar R.; Sharma N.V.K.; Chaurasiya V.K.Adaptive Traffic Light Control Using Deep Reinforcement Learning TechniqueMultimedia Tools and Applications, 83, 5 (2024)
57625 View0.873Ait Ouallane A.; Bahnasse A.; Bakali A.; Talea M.Toward A Smart City: Reinforcement Learning For Traffic Light ControlLecture Notes in Networks and Systems, 629 LNNS (2023)