1345  | 0.933 | Khan S.M.; Haider S.A.; Unwala I. | A Deep Learning Based Classifier For Crack Detection With Robots In Underground Pipes | HONET 2020 - IEEE 17th International Conference on Smart Communities: Improving Quality of Life using ICT, IoT and AI (2020) |
17076  | 0.907 | Li X.; Ma J.; Yu Z.; Sun L.; Zhu J.; Lin J. | D-Triple: An Optimized Defect Detection Deep Model For Sewer Pipes | Proceedings - 2023 IEEE International Conference on Smart Internet of Things, SmartIoT 2023 (2023) |
44341  | 0.897 | Lu J.; Song W.; Zhang Y.; Yin X.; Zhao S. | Real-Time Defect Detection In Underground Sewage Pipelines Using An Improved Yolov5 Model | Automation in Construction, 173 (2025) |
26238  | 0.874 | Kumar P.; Purohit G.; Tanwar P.K.; Kota S.R. | Feasibility Analysis Of Convolution Neural Network Models For Classification Of Concrete Cracks In Smart City Structures | Multimedia Tools and Applications, 82, 25 (2023) |
61491  | 0.865 | Rayhana R.; Jiao Y.; Liu Z.; Wu A.; Kong X. | Water Pipe Valve Detection By Using Deep Neural Networks | Proceedings of SPIE - The International Society for Optical Engineering, 11382 (2020) |
28235  | 0.862 | Xie R.; Chen M.; Tao M.; Ding K.; Chen H. | Gradient And Self-Attention Enabled Convolutional Neural Network For Crack Detection In Smart Cities | Proceedings of the International Conference on Parallel and Distributed Systems - ICPADS (2023) |
1383  | 0.861 | Reis H.C.; Turk V.; Kaya Yildiz C.M.; Bozkurt M.F.; Karagoz S.N.; Ustuner M. | A Deep Neural Network Combined With A Two-Stage Ensemble Model For Detecting Cracks In Concrete Structures | Frontiers of Structural and Civil Engineering (2025) |
26074  | 0.853 | Wang N.; Chen Y.; Li W.; Zhang L.; Tian J. | Fad-Net: Automated Framework For Steel Surface Defect Detection In Urban Infrastructure Health Monitoring | Big Data and Cognitive Computing, 9, 6 (2025) |
61118  | 0.853 | Liu Y.; Zhang X.; Li Y.; Liang G.; Jiang Y.; Qiu L.; Tang H.; Xie F.; Yao W.; Dai Y.; Qiao Y.; Wang Y. | Videopipe 2022 Challenge: Real-World Video Understanding For Urban Pipe Inspection | Proceedings - International Conference on Pattern Recognition, 2022-August (2022) |
44423  | 0.852 | Saleem F.; Ahmad Z.; Kim J.-M. | Real-Time Pipeline Leak Detection: A Hybrid Deep Learning Approach Using Acoustic Emission Signals | Applied Sciences (Switzerland), 15, 1 (2025) |