Smart City Gnosys

Smart city article details

Title A Crowd-Based Image Learning Framework Using Edge Computing For Smart City Applications
ID_Doc 1183
Authors Constantinou G.; Sankar Ramachandran G.; Alfarrarjeh A.; Kim S.H.; Krishnamachari B.; Shahabi C.
Year 2019
Published Proceedings - 2019 IEEE 5th International Conference on Multimedia Big Data, BigMM 2019
DOI http://dx.doi.org/10.1109/BigMM.2019.00-47
Abstract Smart city applications covering a wide area such as traffic monitoring and pothole detection are gradually adopting more image machine learning algorithms utilizing ubiquitous camera sensors. To support such applications, an edge computing paradigm focuses on processing large amount of multimedia data at the edge to offload processing cost and reduce long-distance traffic and latency. However, existing edge computing approaches rely on pre-trained static models and are limited in supporting diverse classes of edge devices as well as learning models to support them. This research proposes a novel crowd-based learning framework which allows edge devices with diverse resource capabilities to perform machine learning towards the realization of image-based smart city applications. The intelligent retraining algorithm allows sharing key visual features to achieve a higher accuracy based on the temporal and geospatial uniqueness. Our evaluation shows the trade-off between accuracy and the resource constraints of the edge devices, while the model re-sizing option enables running machine learning models on edge devices with high flexibility. © 2019 IEEE.
Author Keywords Crowd-based Learning; Crowdsourcing; Edge Devices; Machine Learning; Smart Cities


Similar Articles


Id Similarity Authors Title Published
21836 View0.889Barthélemy, J; Verstaevel, N; Forehead, H; Perez, PEdge-Computing Video Analytics For Real-Time Traffic Monitoring In A Smart CitySENSORS, 19, 9 (2019)
22927 View0.884Nizam M.K.; Goyal S.B.; Verma C.; Illés Z.Empowering Smart Cities With Edge Computing-Based Iot Systems: A Focus On Data Analytics And Machine Learning TechniquesLecture Notes in Electrical Engineering, 1194 (2024)
56855 View0.882Al-Qudah R.; Khamayseh Y.; Aldwairi M.; Khan S.The Smart In Smart Cities: A Framework For Image Classification Using Deep LearningSensors, 22, 12 (2022)
21807 View0.882Skadins A.; Ivanovs M.; Rava R.; Nesenbergs K.Edge Pre-Processing Of Traffic Surveillance Video For Bandwidth And Privacy Optimization In Smart CitiesProceedings of the Biennial Baltic Electronics Conference, BEC, 2020-October (2020)
5117 View0.878Bellavista P.; Chatzimisios P.; Foschini L.; Paradisioti M.; Scotece D.A Support Infrastructure For Machine Learning At The Edge In Smart City SurveillanceProceedings - IEEE Symposium on Computers and Communications, 2019-June (2019)
5251 View0.876Hoffpauir K.; Simmons J.; Schmidt N.; Pittala R.; Briggs I.; Makani S.; Jararweh Y.A Survey On Edge Intelligence And Lightweight Machine Learning Support For Future Applications And ServicesJournal of Data and Information Quality, 15, 2 (2023)
40272 View0.874Badidi E.; Moumane K.; Ghazi F.E.Opportunities, Applications, And Challenges Of Edge-Ai Enabled Video Analytics In Smart Cities: A Systematic ReviewIEEE Access, 11 (2023)
17778 View0.873Mansouri W.; Alohali M.A.; Alqahtani H.; Alruwais N.; Alshammeri M.; Mahmud A.Deep Convolutional Neural Network-Based Enhanced Crowd Density Monitoring For Intelligent Urban Planning On Smart CitiesScientific Reports, 15, 1 (2025)
22694 View0.872Martin J.; Cantero D.; González M.; Cabrera A.; Larrañaga M.; Maltezos E.; Lioupis P.; Kosyvas D.; Karagiannidis L.; Ouzounoglou E.; Amditis A.Embedded Vision Intelligence For The Safety Of Smart CitiesJournal of Imaging, 8, 12 (2022)
21817 View0.867Siddiqa A.; Khan W.Z.; Alkinani M.H.; Aldhahri E.A.; Khan M.K.Edge-Assisted Federated Learning Framework For Smart Crowd ManagementInternet of Things (Netherlands), 27 (2024)