Smart City Gnosys

Smart city article details

Title Artificial Intelligence Of Things-Assisted Two-Stream Neural Network For Anomaly Detection In Surveillance Big Video Data
ID_Doc 10522
Authors Ullah W.; Ullah A.; Hussain T.; Muhammad K.; Heidari A.A.; Del Ser J.; Baik S.W.; De Albuquerque V.H.C.
Year 2022
Published Future Generation Computer Systems, 129
DOI http://dx.doi.org/10.1016/j.future.2021.10.033
Abstract In the last few years, visual sensors are deployed almost everywhere, generating a massive amount of surveillance video data in smart cities that can be inspected intelligently to recognize anomalous events. In this work, we present an efficient and robust framework to recognize anomalies from surveillance Big Video Data (BVD) using Artificial Intelligence of Things (AIoT). Smart surveillance is an important application of AIoT and we propose a two-stream neural network in this direction. The first stream comprises instant anomaly detection that is functional over resource-constrained IoT devices, whereas second phase is a two-stream deep neural network allowing for detailed anomaly analysis, suited to be deployed as a cloud computing service. Firstly, a self-pruned fine-tuned lightweight convolutional neural network (CNN) classifies the ongoing events as normal or anomalous in an AIoT environment. Upon anomaly detection, the edge device alerts the concerned departments and transmits the anomalous frames to cloud analysis center for their detailed evaluation in the second phase. The cloud analysis center resorts to the proposed two-stream network, modeled from the integration of spatiotemporal and optical flow features through the sequential frames. Fused features flow through a bi-directional long short-term memory (BD-LSTM) layer, which classifies them into their respective anomaly classes, e.g., assault and abuse. We perform extensive experiments over benchmarks built on top of the UCF-Crime and RWF-2000 datasets to test the effectiveness of our framework. We report a 9.88% and 4.01% increase in accuracy when compared to state-of-the-art methods evaluated over the aforementioned datasets. © 2021 Elsevier B.V.
Author Keywords Anomaly detection; Anomaly recognition; Surveillance videos; Two-stream network


Similar Articles


Id Similarity Authors Title Published
8699 View0.929Islam M.; Dukyil A.S.; Alyahya S.; Habib S.An Iot Enable Anomaly Detection System For Smart City SurveillanceSensors, 23, 4 (2023)
3569 View0.901Zhao Y.; Man K.L.; Smith J.; Guan S.-U.A Novel Two-Stream Structure For Video Anomaly Detection In Smart City ManagementJournal of Supercomputing, 78, 3 (2022)
32356 View0.889Ullah W.; Hussain T.; Khan Z.A.; Haroon U.; Baik S.W.Intelligent Dual Stream Cnn And Echo State Network For Anomaly DetectionKnowledge-Based Systems, 253 (2022)
48481 View0.883Ullah W.; Min Ullah F.U.; Ahmad Khan Z.; Wook Baik S.Sequential Attention Mechanism For Weakly Supervised Video Anomaly DetectionExpert Systems with Applications, 230 (2023)
22251 View0.879Saleem G.; Bajwa U.I.; Raza R.H.; Alqahtani F.H.; Tolba A.; Xia F.Efficient Anomaly Recognition Using Surveillance VideosPeerJ Computer Science, 8 (2022)
61219 View0.871Ullah W.; Hussain T.; Baik S.W.Vision Transformer Attention With Multi-Reservoir Echo State Network For Anomaly RecognitionInformation Processing and Management, 60, 3 (2023)
6497 View0.869Goyal H.R.; Husain S.O.; Dixit K.K.; Boob N.S.; Reddy B.R.; Kumar J.; Sharma S.Advanced Deep Learning Approaches For Real-Time Anomaly Detection In Iot EnvironmentsProceedings of International Conference on Contemporary Computing and Informatics, IC3I 2024 (2024)
999 View0.868Baala A.; Mostafa H.; Mohssine B.A Comprehensive Systematic Review Of Deep Learning Techniques For Anomaly Detection In Urban Video Surveillance2025 5th International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2025 (2025)
39047 View0.864Liu J.; Liu Y.; Lin J.; Li J.; Cao L.; Sun P.; Hu B.; Song L.; Boukerche A.; Leung V.C.M.Networking Systems For Video Anomaly Detection: A Tutorial And SurveyACM Computing Surveys, 57, 10 (2025)
9627 View0.862Borawar L.; Kaur R.Anomaly Detection Methods In Surveillance Videos: A Survey2022 International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2022 (2022)