Smart City Gnosys

Smart city article details

Title Artificial Intelligence And Cybersecurity Within A Social Media Context: Implications And Insights For Kuwait
ID_Doc 10397
Authors Alrabea K.J.; Alsaffar M.; Alsafran M.A.; Alsaber A.; Almutairi S.; Al-Saeed F.; Alkandari A.M.
Year 2024
Published Journal of Science and Technology Policy Management
DOI http://dx.doi.org/10.1108/JSTPM-12-2023-0224
Abstract Purpose: By addressing the dearth of literature on the subject of cybersecurity risks and artificial intelligence (AI), this study aims to close a research gap by concentrating on the ever-changing environment of online social networks (OSNs) and technology. The main goals are to classify cyberattacks into categories like malware, phishing/spam and network intrusion detection; to identify efficient algorithms for preventing cyber threats; to review relevant literature from 2019 to 2020; and to use machine learning algorithms to detect suspicious behavior related to malware. The study offers a novel framework that suggests particular machine learning algorithms for every kind of cyber threat, hence improving cybersecurity knowledge and reaction capacities. This makes the research useful for examining the impact of cybersecurity on smart cities. Design/methodology/approach: Thirty papers have been examined on AI and machine learning algorithms, including K-nearest-neighbor (KNN), convolutional neural networks (CNN) and Random Forest (RF), that were published in 2019 and 2020. Using analytical software (NVivo), a qualitative approach is used to retrieve pertinent data from the chosen research. The researchers divide cyberattacks into three groups: network intrusion detection, phishing/spam and malware. Findings: The study’s conclusions center on how AI and machine learning algorithms linked to cybersecurity are reviewed in the literature, how cyberattacks are classified and how an inventive framework for identifying and reducing risks is proposed. This makes the research useful for researching the implications of cybersecurity for smart cities. Practical implications: The practical implications of this research are noteworthy, particularly in the realms of technology, AI, machine learning and innovation. The utilization of the NVivo technique enhances decision-making in uncertain situations, making the study’s results more reliable. The findings showcase the applicability of tools in analyzing malicious cyberattacks to address issues related to social media attacks, emphasizing their practical utility. The study’s relevance is further highlighted by a real-world example, where a Kuwaiti public sector fell victim to a malware attack, underlining the importance of cybersecurity measures aligned with the New Kuwait 2035 strategic development plan. The innovative framework presented in the research guides the selection of algorithms for detecting specific malicious attacks, offering practical insights for securing information technology (IT) infrastructure in Kuwait. Social implications: The rapid digitization in Kuwait, accelerated by the COVID-19 pandemic, underscores the pivotal role of technology in government services. Ma’murov et al. (2023) emphasize the significance of digitization, particularly in accessing and verifying COVID-19 information. The call for a dedicated digital library for preserving pandemic-related material aligns with the evolving digital landscape. Cybersecurity emerges as a critical concern in Kuwait and the Gulf Cooperation Council (GCC), necessitating transnational cooperation (Nasser Alshabib and Tiago Martins, 2022). In the local context, the inefficiency of information security systems and low awareness among government employees pose cybersecurity challenges (Abdulkareem et al., 2014). Social media’s role during the pandemic highlights its significance, yet the need for cybersecurity in this domain remains underexplored (Ma’murov et al., 2023; Safi et al., 2023). Originality/value: The unique aspect of the paper is its in-depth investigation of the relationship between cybersecurity and AI in OSNs. It uses a special application of machine learning methods, including CNN, RF and KNN, to identify suspicious behavior patterns linked to malware. The detailed analysis of 30 research papers released between 2019 and 2020, which informs the choice of suitable algorithms for diverse cyber threats, further emphasizes the study’s uniqueness. The novel framework that has been suggested categorizes assaults and suggests certain machine learning techniques for identification, offering a useful instrument to improve comprehension and reactions to a variety of cybersecurity issues. © 2024, Emerald Publishing Limited.
Author Keywords AI; Algorithms; Cyber-threats; Cybersecurity; Data mining algorithms; Framework; Machine learning; Malware; Network intrusion; Review; Social media; Spam


Similar Articles


Id Similarity Authors Title Published
6056 View0.891Haque M.A.; Ahmad S.; Sonal D.; Abdeljaber H.A.M.; Mishra B.K.; Eljialy A.E.M.; Alanazi S.; Nazeer J.Achieving Organizational Effectiveness Through Machine Learning Based Approaches For Malware Analysis And Detection; [Lograr La Eficacia Organizativa Mediante Enfoques Basados En El Aprendizaje Automático Para El Análisis Y La Detección De Malware]Data and Metadata, 2 (2023)
13293 View0.888Khan J.; Elfakharany R.; Saleem H.; Pathan M.; Shahzad E.; Dhou S.; Aloul F.Can Machine Learning Enhance Intrusion Detection To Safeguard Smart City Networks From Multi-Step Cyberattacks?Smart Cities, 8, 1 (2025)
19240 View0.886Rangani H.; Chandrashekar K.Detection And Prevention Of Cyber Threats In Smart Cities Using Machine Learning And Intrusion Detection Systems2nd International Conference on Self Sustainable Artificial Intelligence Systems, ICSSAS 2024 - Proceedings (2024)
6993 View0.881Alhamdi M.J.M.; Lopez-Guede J.M.; AlQaryouti J.; Rahebi J.; Zulueta E.; Fernandez-Gamiz U.Ai-Based Malware Detection In Iot Networks Within Smart Cities: A SurveyComputer Communications, 233 (2025)
50142 View0.871Prajapati Y.; Suthar O.P.; Gosai K.; Singh S.K.Smart City Cybersecurity: Leveraging Machine Learning For Advanced Ransomware Detection And Prevention2025 International Conference on Pervasive Computational Technologies, ICPCT 2025 (2025)
47815 View0.862Lyu Q.; Liu S.; Shang Z.Securing Urban Landscape: Cybersecurity Mechanisms For Resilient Smart CitiesIEEE Access, 13 (2025)
23767 View0.86Olowe O.T.; Adebiyi A.A.; Marion A.O.; Tobi O.M.; Olaniyan D.; Olaniyan J.; Emmanuel A.; Akindeji K.Enhancing Cybersecurity Through Advanced Fraud And Anomaly Detection Techniques: A Systematic ReviewInternational Conference on Science, Engineering and Business for Driving Sustainable Development Goals, SEB4SDG 2024 (2024)
814 View0.86Basheer L.; Ranjana P.A Comparative Study Of Various Intrusion Detections In Smart Cities Using Machine Learning2022 International Conference on IoT and Blockchain Technology, ICIBT 2022 (2022)
57853 View0.859Al-Taleb N.; Saqib N.A.Towards A Hybrid Machine Learning Model For Intelligent Cyber Threat Identification In Smart City EnvironmentsApplied Sciences (Switzerland), 12, 4 (2022)
24715 View0.859Ali M.; Pervez S.; Hosseini S.E.; Siddhu M.K.Evaluation And Detection Of Cyberattack In Iot-Based Smart City Networks Using Machine Learning On The Unsw-Nb15 DatasetInternational Journal of Online and Biomedical Engineering, 21, 2 (2025)